

BENNO KRUIT, PETER BONCZ, JACOPO URBANI

EXTRACTING N-ARY FACTS FROM WIKIPEDIA TABLE CLUSTERS

MAIN TAKEAWAY: EXTRACT FACTS FROM TABLES

- We reshape, cluster, and integrate tables with KB
 - to extract n-ary facts from Wikipedia tables for Wikidata
 - 1.5M tables → 15M binary and 6M n-ary novel facts

<u>github.com/karmaresearch/takco</u> <u>takco.readthedocs.io</u>

WHY EXTRACT INFORMATION FROM WIKIPEDIA TABLES?

- High-quality background knowledge
 - ... about **known topics**
- Examples of tables for human readers

How do we automatically process tables that were not designed for automatic processing?

MOTIVATION

1977 Manitoba general election

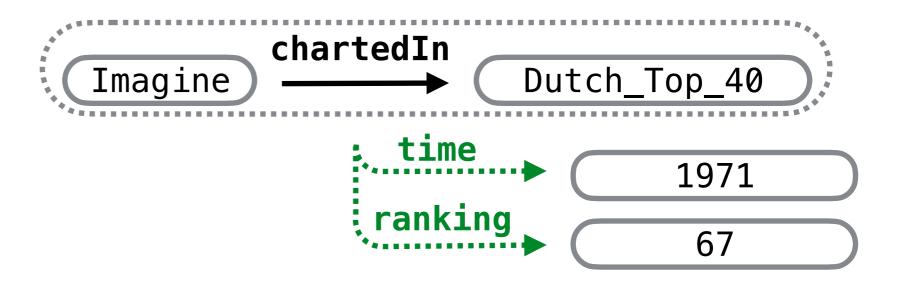
From Wikipedia, the free encyclopedia

	David.	Party Leader	# of candidates	Seats			Popular Vote		
	Party			1973	Elected	% Change	#	%	Change
	Progressive Conservative	Sterling Lyon	57	21	33	+57.1%	237,496	48.75%	+12.02
	New Democratic	Edward Schreyer	57	31	23	-25.8%	188,124	38.62%	-3.69
	Liberal	Charles Huband	53	5	1	-80.0%	59,865	12.29%	-6.75
	Social Credit	Jacob Froese	5	-	-	-	1,323	0.27%	-0.10
	Communist	William Cecil Ross	4	-	2	5-2	299	0.06%	+0.01
	Revolutionary Workers		1	*	==	*	47	0.01%	*
	Independent		-	1	-	-100%	-	14	-1.49
To	otal		177	57	57	-	487,154	100%	

MOTIVATION

Imagine (John Lennon song)

From Wikipedia, the free encyclopedia


Charts and certifications [edit]

Year-end charts [edit]

Chart (1971) +	Rank +
Canada Top Singles (RPM)[128]	15
Netherlands (Dutch Top 40)[129]	67
Netherlands (Single Top 100)[130]	82

Chart (1972) +	Rank +
Australia (Kent Music Report)[131]	19
Japan (Oricon)[103]	98
South Africa (Springbok Radio)[132]	5

Chart (1981) +	Rank +
Belgium (Ultratop 50 Flanders)[133]	86
Netherlands (Dutch Top 40)[134]	70
Netherlands (Single Top 100)[135]	73

WHAT MAKES IT HARD?

- The tables are semantically related (same set of entities)
 - But diverse (different authors, topics, lay-outs)
- Most tables express n-ary relations
 - But existing work on table interpretation uses entity-attribute assumption!

APPROACH

- How to extract usable facts from real tables?
 - 1. How to clean the **lay-outs** that people use in practice?
 - Unpivot heuristics
 - 2. How to propagate information between similar tables?
 - Create union table by clustering
 - 3. How to integrate them with the (n-ary) KB data model?
 - Strong assumptions for high precision

1. RESHAPING: UNPIVOT HEURISTICS

- Clean up sub-headers and footnotes (see paper)
- Add context as extra columns (see paper)
- Unpivot tables on value-like header cells

Commodores (album)

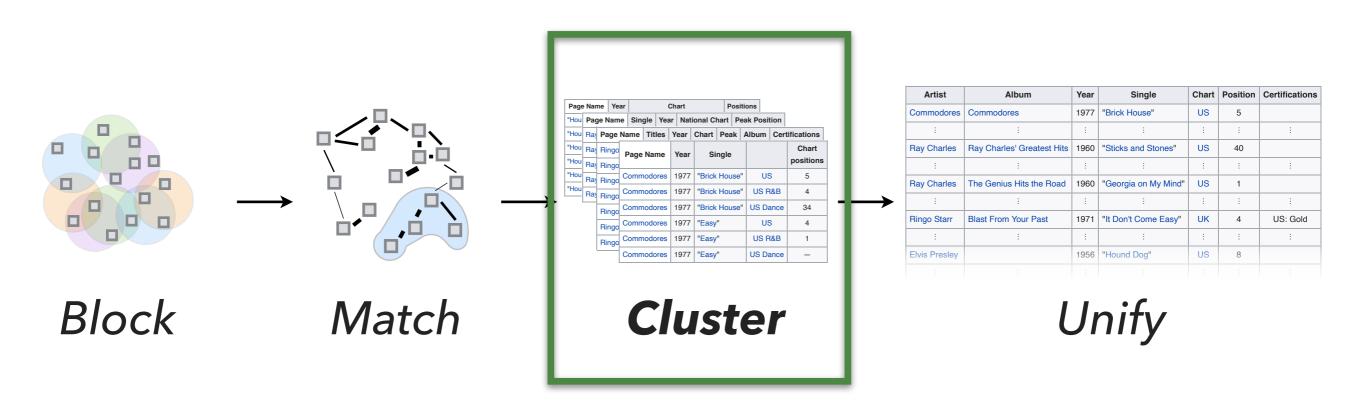
		Chart positions				
Year	Single	US	US R&B	US Dance		
1977	"Brick House"	5	4	34		
1977	"Easy"	4	1	_		

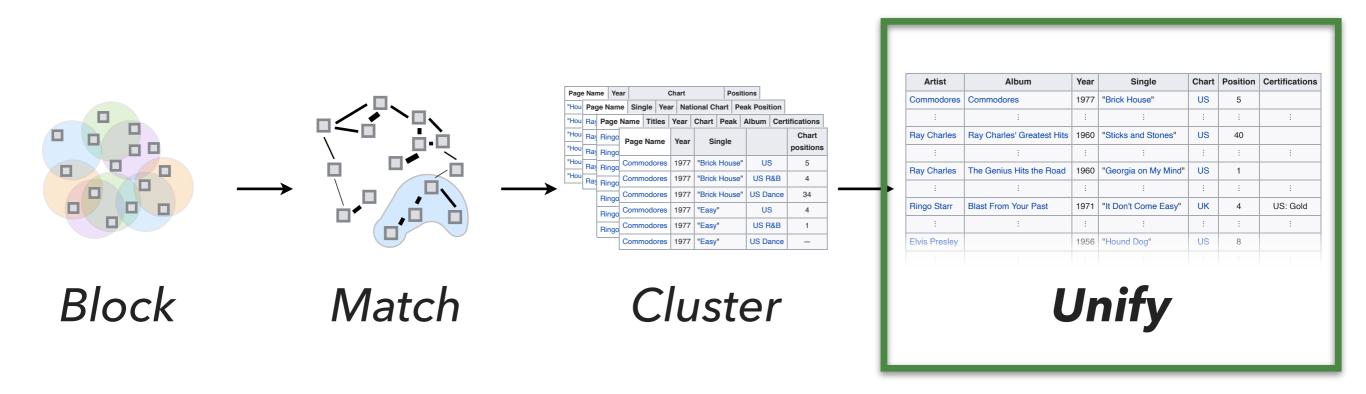
Page Name	Year	Single		Chart positions
Commodores	1977	"Brick House'	US	5
Commodores	1977	"Brick House'	US R&B	4
Commodores	1977	"Brick House'	US Dance	34
Commodores	1977	"Easy"	US	4
Commodores	1977	"Easy"	US R&B	1
Commodores	1977	"Easy"	US Dance	_


1. RESHAPING: UNPIVOT HEURISTICS

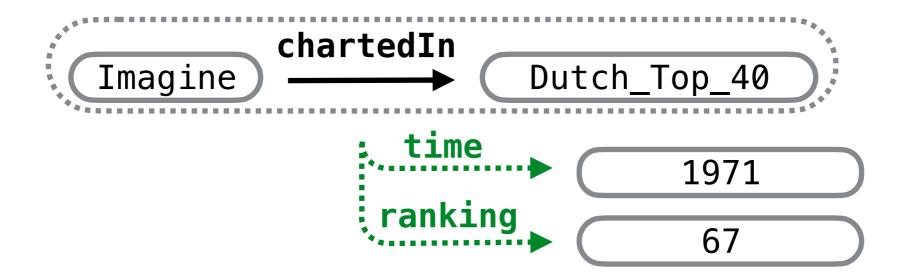
Unpivot each sequence of cells that...

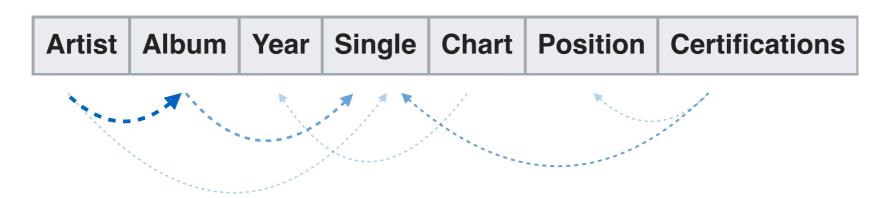

- 1. Start/end with **number**
- 2. Have <Agent> hyperlink
- 3. Span values that repeat
- 4. Mostly **spanned** / in **body**
- 5. Values are a rare outlier


Reshaping makes it easier to cluster and unify tables


- Approximate indexes on header / body cells
 - Locality-sensitive Hashing: Jaccard index
 - Approximate Nearest Neighbors: Word Embeddings

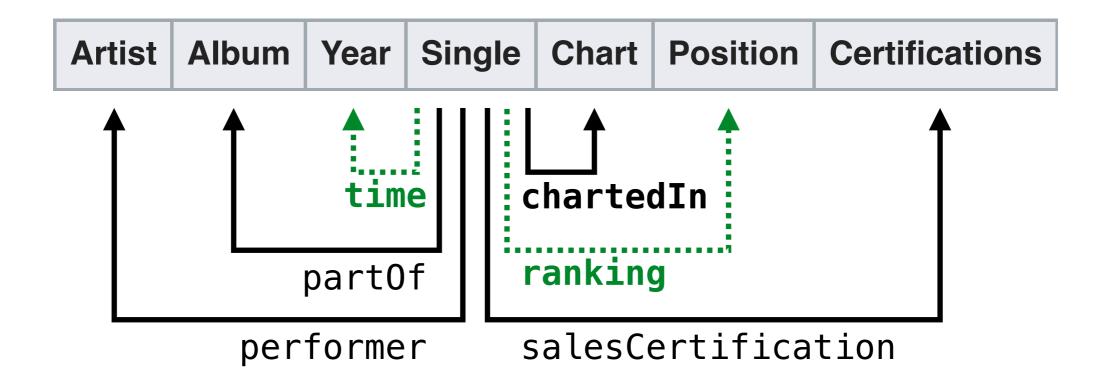
- Match tables with different metrics
 - Jaccard index
 - Word embeddings
 - Column types


- ▶ Aggregate table matches → weighted graph
- Louvain modularity for graph partitioning
 - Scales to large graphs


- Create union tables from partitions
 - Align columns by agglomeration
 - Propagate information within unified table

3. LINKING: MATCH COLUMNS TO KB

- Some KBs (like Wikidata) have n-ary relations
 - Some rows will match n-ary facts, others binary
 - N-ary facts are often expressed incompletely


3. LINKING: KEY COLUMNS

- Functional dependency discovery
 - **Key column**: Top harmonic mean
 - ► High → Ent-att table; Low → N-ary table
 - Non-key dependencies: extra binary facts
- Evaluation: outperforms baselines

3. LINKING: STRONG ASSUMPTIONS

- N-ary relations: Main-property-value—first matching
 - To compensate for KB and table incompleteness
 - High precision; improving recall is future work

RESULTS

- Created annotated gold standard for evaluation
 - Each step outperforms its baseline
- Scaled to 1.5M Wikipedia tables
 - extracted 15M binary and 6M n-ary novel facts

CONCLUSION & FUTURE WORK

- This work: reshape, cluster, and integrate tables with KB
 - 1.5M tables → 15M binary and 6M n-ary novel facts
- Next: Run pipeline in practice and contribute to Wikidata
 - Improve pipeline using weakly supervised learning
 - Ontology augmentation: new entities & relations
- Goal: Involve community in open-source effort

<u>github.com/karmaresearch/takco</u> <u>takco.readthedocs.io</u>

BENNO KRUIT kruit@cwi.nl