
TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

BENNO KRUIT, HONGYU HE, JACOPO URBANI

- minimize input from subject matter experts
- maximize generalization and control
- Combine ontology, rules, and machine learning
 - created KB from 73k tables in context

code: <u>github.com/karmaresearch/tab2know</u> data: <u>doi.org/10.5281/zenodo.3983013</u>

TABLES IN SCIENTIFIC PAPERS

- Structured information about scientific process
 - similar structure across documents
- Could support reviews or search
- Examples of tables for **human readers**

How do we convert semi-structured data into high-quality semantic data with as little effort as possible?

PROBLEMS

- Tables must be **extracted** from PDFs
 - reconstruct from PDF text-boxes!
- Every author uses different conventions
 - e.g. structure, jargon, layout, formats
- No Knowledge Base to link concepts
- Interpretation is goal-specific
 - Both construction and querying must be user-oriented and flexible

TABLE I. R	ANKING OF	SUBMITTED	METHODS	то	TASK	1.1
------------	-----------	-----------	---------	----	------	-----

Method Name	Recall (%)	Precision (%)	F-score
USTB_TexStar	82.38	93.83	87.74
TH-TextLoc	75.85	86.82	80.96
I2R_NUS_FAR	71.42	84.17	77.27
Baseline	69.21	84.94	76.27
Text Detection [15], [16]	73.18	78.62	75.81
I2R_NUS	67.52	85.19	75.34
BDTD_CASIA	67.05	78.98	72.53
OTCYMIST [7]	74.85	67.69	71.09
Inkam	52.21	58.12	55.00

TAB2KNOW

- A system for constructing and querying a Knowledge Base of information extracted from tables in scientific papers
 - 1. Structural foundation: simple graph of extracted structure
 - 2. Semantic layer: predicted types of tables and columns
 - 3. Entity layer: similar cells resolved to entity clusters
- Based on user-written rules and queries
 - used as weak supervision for machine learning models

(1) Table

1. STRUCTURAL FOUNDATION

TABLE I. **RANKING OF SUBMITTED METHODS TO TASK 1.1**

Method Name	Recall (%)	Precision (%)	F-score
USTB_TexStar	82.38	93.83	87.74
TH-TextLoc	75.85	86.82	80.96
I2R_NUS_FAR	71.42	84.17	77.27
Baseline	69.21	84.94	76.27
Text Detection [15], [16]	73.18	78.62	75.81
I2R_NUS	67.52	85.19	75.34
BDTD_CASIA	67.05	78.98	72.53
OTCYMIST [7]	74.85	67.69	71.09
Inkam	52.21	58.12	55.00

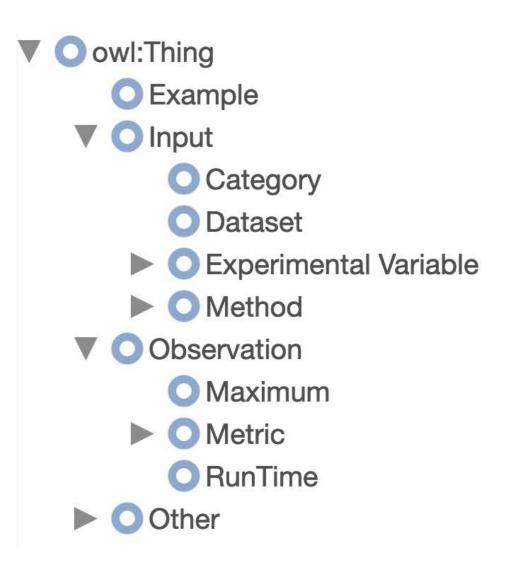
	REEL Name http://xzy/tab2known (%)	F-score
	Tabler hasRow : Pable1-r1 93.83	87.74
	TH-TextLoc 75.85 86.82	80.96
N	Hable 1 rdf:type.42: Row 84.17	77.27
\rangle	$\frac{B_{\text{Table1-r1}}}{T_{\text{Text Detection [15], [16]}} : row Index^{1} 1^{\langle x sd. unt \rangle}$	76.27
/	Text Detection [15], [16] 73.18 78.62	75.81
, F	Table1-r1c1 :celk0f2 :Table119	75.34
e Extraction	$\begin{array}{c} \begin{array}{c} \text{BDTB1CASIA}\\ \text{TaB1e1} \\ T$	72.53
		71.09
	:Rable1-r1c1 rdf:value "Method na	me5.00

TABLE I.

Naïve, structural graph + paper metadata in RDF

- pdffigures2 for table detection and
- Already supports rich queries
 - frequent cells, co-occurrence, column headers, datatypes, SØ venues, authors, ...

20

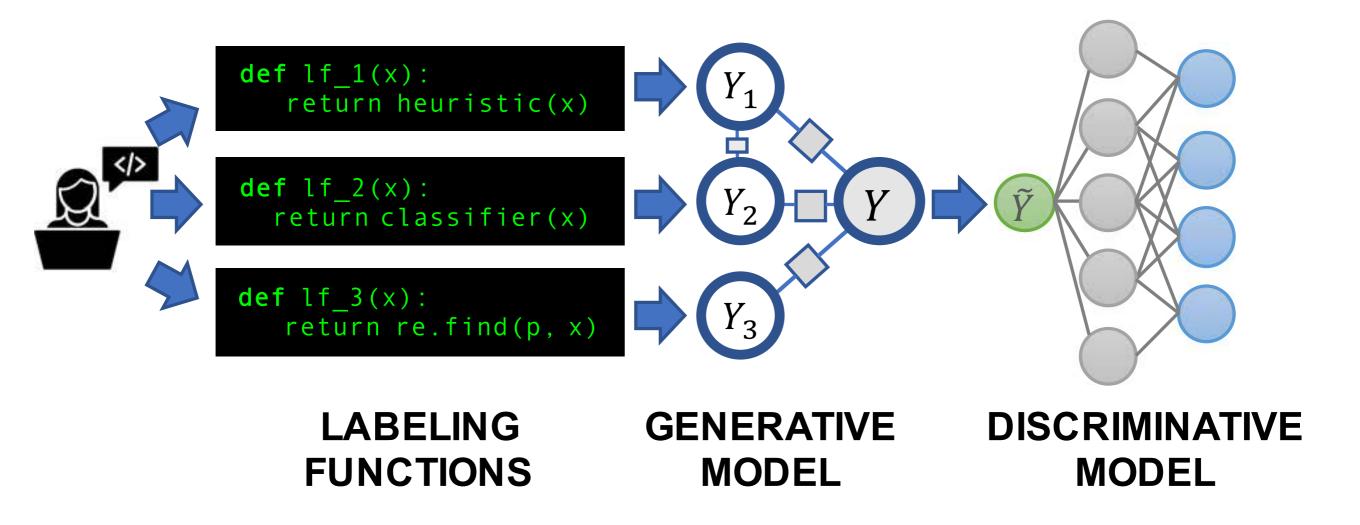

1	Method Name	Recall (%)	Precision (%)	F-score
2	USTB_TexStar	82.38	93.83	87.74
3	TH-TextLoc	75.85	86.82	80.96
4	abula tor	71 62 X	ractic	7197
5	Baseline	69.21	84.94	76.27
6	Text Detection [15],[16]	73.18	78.62	75.81
7	I2R_NUS	67.52	85.19	75.34
8	BDTD_CASIA	67.05	78.98	72.53
9	OTCYMIST [7]	74.85	67.69	71.09
10	Inkam	52.21	58.12	55.00

RANKING OF SUBMITTED METHODS TO TASK 1.1

D

2. SEMANTIC LAYER

- Table interpretation
 - Much research on web tables + existing KB
 - But we have expert tables + no KB!
 - Labeling data is expensive
- Generalize from expert heuristics using weak supervision


WEAK SUPERVISION

- Hand-labeling data is expensive and inflexible
 - ... so write **labeling functions** instead!
- Aggregate weak signals for training ML models
 - exploit labeling function correlations and sparsity
- Snorkel (Ratner et al, VLDB2020)

- DryBell @ Google (Bach et al., SIGMOD 2019)
- Overton @ Apple (Christopher Ré et al., 2019)

WEAK SUPERVISION

(Ratner et al)

EXAMPLE: TABLE TYPES

$l_1 - l_2$	#S	$\#l_1$ -W	$\#l_2$ -W	$#l_1-V$	$#l_2-V$
en-de	1.9M	55M	52M	40k	50k
en-fr	2.0M	50M	51M	40k	50k
en-es	1.9M	49M	51M	40k	50k

(a) Input

Туре	Example Words
Offensive	disgusting, filthy, nasty, rude, horrible, terrible, aw- ful, worst, idiotic, stupid, dumb, ugly, etc.
Non-offensive	help, love, respect, believe, congrats, hi, like, great, fun, nice, neat, happy, good, best, etc.

Models	Rerank size	Beam size	GMV	Latency
miDNN	50	-	2.91%	9%
miRNN	50	5	5.03%	58%
miRNN+att.	50	5	5.82%	401%

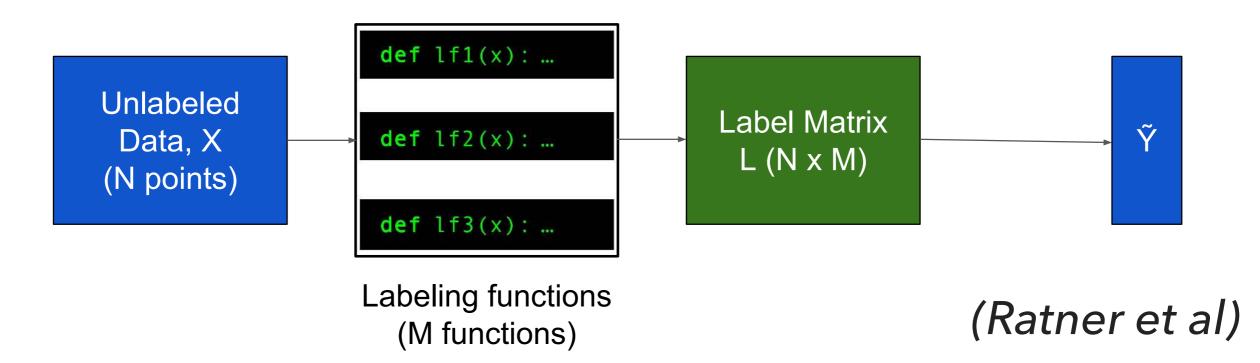
(b) Observation

$lpha_c P_0(e c)$	DP concentration parameter for each $c \in V$ CFG base distribution
$I_0(e c)$	
$oldsymbol{x}$	Set of non-terminal nodes in the treebank
S	Set of sampling sites (one for each $x \in \boldsymbol{x}$)
S	A block of sampling sites, where $S \subseteq \mathcal{S}$
$\boldsymbol{b} = \{b_s\}_{s \in \mathcal{S}}$	Binary variables to be sampled ($b_s = 1 \rightarrow$
	frontier node)
z	Latent state of the segmented treebank
m	Number of sites $s \in S$ s.t. $b_S = 1$
$oldsymbol{n} = \{n_{c,e}\}$	Sufficient statistics of \boldsymbol{z}
$\Delta n^{S:m}$	Change in counts by setting m sites in S

(d) Other

(c) Example

EXAMPLE: TABLE TYPES


Туре	Example Words
Offensive	disgusting, filthy, nasty, rude, horrible, terrible, aw- ful, worst, idiotic, stupid, dumb, ugly, etc.
Non-offensive	help, love, respect, believe, congrats, hi, like, great, fun, nice, neat, happy, good, best, etc.

(c) Example

```
select distinct ?table where {
   SERVICE bds:search {
      ?matchedValue bds:search "example" .
   }
   ?table dct:title ?matchedValue .
}
```

rol

WEAKLY SUPERVISED MODEL TRAINING

- Two options for aggregating labels:
 - Majority Vote
 - Snorkel Model

Many options for ML model, but must not overfit!

3. ENTITY RESOLUTION

- Vlog: Large-scale reasoning on contexts of cell values
 - e.g. column header, column type, author, ...
 - If similar, merge cell values into entity clusters
- Scales to very large graphs (Best Resource @ ISWC 2019)

 $type(X, \texttt{Column}) \to \exists Y.colEntity(X, Y)$ $type(X, \texttt{Cell}) \to \exists Y.cellEntity(X, Y)$

 $ceNoTypLabel(X,L), ceNoTypLabel(Y,L) \rightarrow X \approx Y$ $eNoTypLabel(X,C,L), eNoTypLabel(Y,C,L) \rightarrow X \approx Y$ $eTableLabel(X,T,L), eTableLabel(Y,T,L) \rightarrow X \approx Y$ $eTypLabel(X,S,L), eTypLabel(Y,S,M), STR_EQ(L,M) \rightarrow X \approx Y$ $eAuthLabel(X,A,L), eAuthLabel(Y,A,M), STR_EQ(L,M) \rightarrow X \approx Y$

METHOD SUMMARY

TABLE I.	R ANKING OF SUBMITTED METHODS TO TASK 1.1
----------	--

Method Name	Recall (%)	Precision (%)	F-score	-	Method Name	Recall (%)	Precision (%)	F-score
USTB_TexStar	82.38	93.83	87.74		USTB_TexStar	82.38	93.83	87.74
TH-TextLoc	75.85	86.82	80.96		TH-TextLoc	75.85	86.82	80.96
I2R_NUS_FAR	71.42	84.17	77.27	N	I2R_NUS_FAR	71.42	84.17	77.27
Baseline	69.21	84.94	76.27		Baseline	69.21	84.94	76.27
Text Detection [15], [16]	73.18	78.62	75.81	/	Text Detection [15], [16]	73.18	78.62	75.81
I2R_NUS	67.52	85.19	75.34		I2R_NUS	67.52	85.19	75.34
BDTD_CASIA	67.05	78.98	72.53	(1) Table Extraction	BDTD_CASIA	67.05	78.98	72.53
OTCYMIST [7]	74.85	67.69	71.09		OTCYMIST [7]	74.85	67.69	71.09
Inkam	52.21	58.12	55.00		Inkam	52.21	58.12	55.00
Input: PDF Fig	jure				-	\Box		
APIs	Ontol	ogy	_N	Naïve KB	Table type classific	~ ation	Header (detection
	. I		$\langle \rangle$					
Semantic Sch	iolar		V		Method Name	Recall (%)	Precision (%)	F-score
•				•	USTB_TexStar	82.38	93.83	87.74
					TH-TextLoc	75.85	86.82	80.96
					I2R_NUS_FAR	71.42	84.17	77.27
SPARQL Quer	rios				Baseline	69.21	84.94	76.27
	163		N	80	Text Detection [15],[16]	73.18	78.62	75.81
		, l	_ ∖	Snorkel C	I2R_NUS	67.52	85.19	75.34
	ARQL Query 1		_/		BDTD_CASIA	67.05	78.98	72.53
	ARQL Query 2		V	V	OTCYMIST [7]	74.85	67.69	71.09
52	ARQL Query 3	5			Inkam	52.21	58.12	55.00
			(2)	Table Interpretation	L			
Rules				\bigtriangledown	Column	type clas. \sim	sification	
	Rule 1 Rule 2 Rule 3		\rightarrow	VLog 80				
				(3) Entity Linking		~	\sim	

Output: KB (with linked entities)

Assets

RESULTS: TABLE TYPES

- Gold standard: 400 sampled tables from 17 Al venues
- Manual annotation: **4** table types, **39** label queries
- Features from table **caption**, **header** cells and **body** cells

Model	Prec.	Recall	F1	AUC
SVM	0.71	0.79	0.74	0.86
LR	0.72	0.79	0.74	0.84
NB	0.80	0.82	0.79	0.91

ML model performance on Tab2Know data

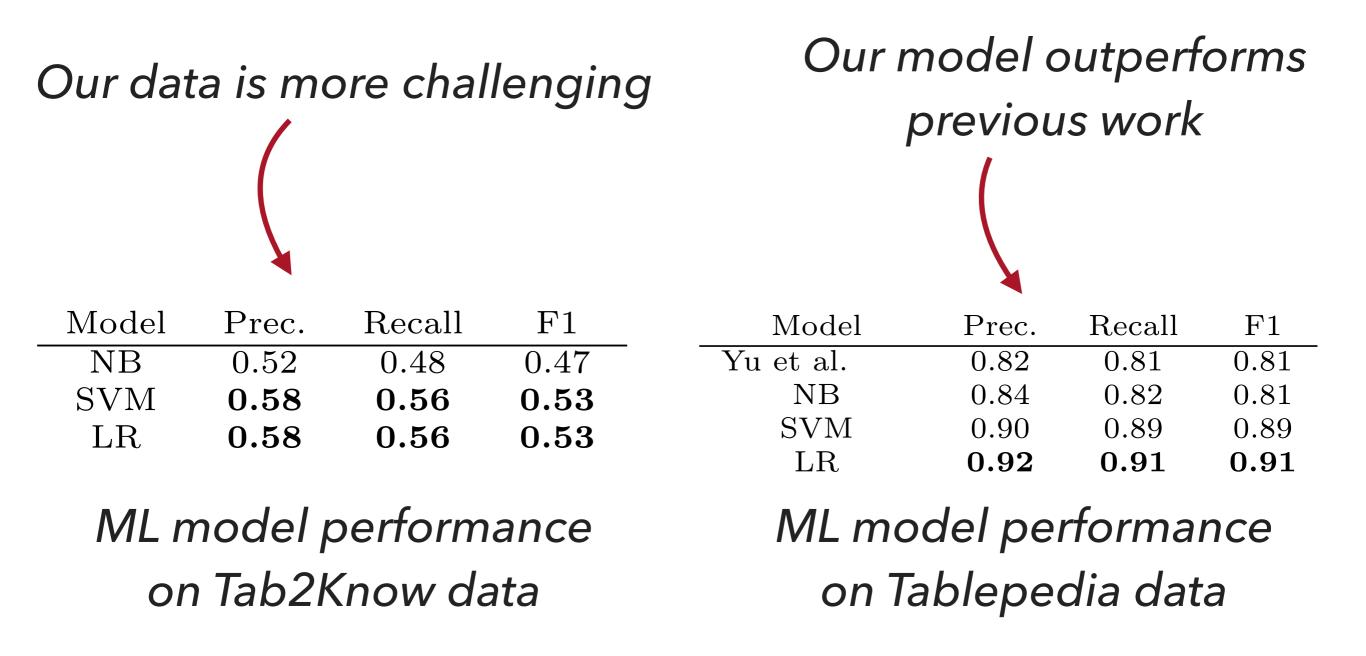
RESULTS: COLUMN TYPES

Tab2Know data

- 22 column types
- 55 label queries

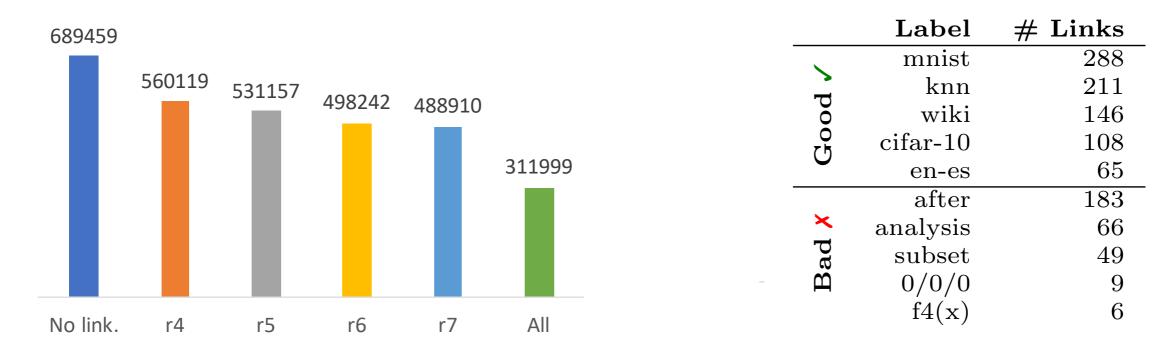
Tablepedia data

- **3** column types
- 15 seed concepts


Model	Prec.	Recall	F1
NB	0.52	0.48	0.47
SVM	0.58	0.56	0.53
LR	0.58	0.56	0.53

ML model performance on Tab2Know data

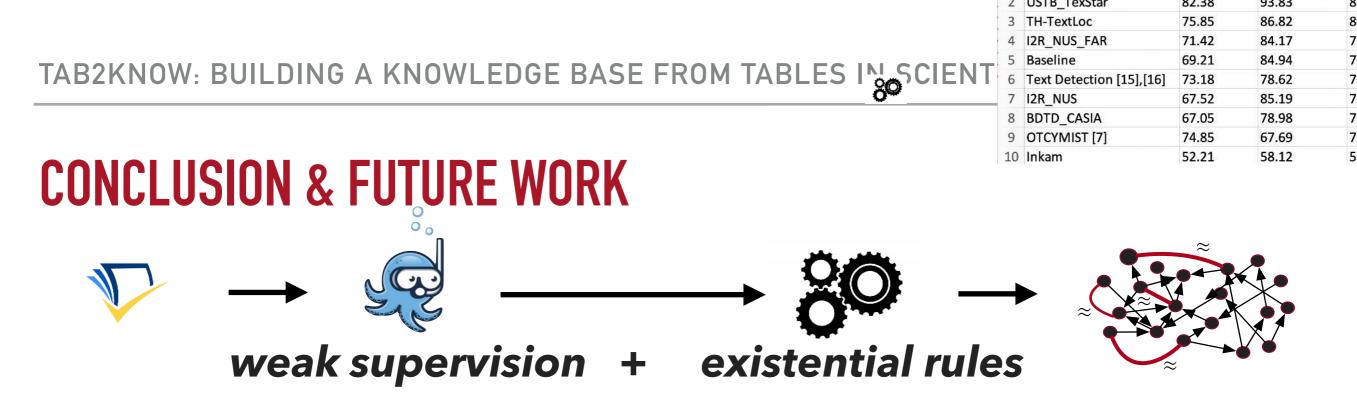
Model	Prec.	Recall	F1
Yu et al.	0.82	0.81	0.81
NB	0.84	0.82	0.81
SVM	0.90	0.89	0.89
LR	0.92	0.91	0.91


ML model performance on Tablepedia data

RESULTS: COLUMN TYPES

RESULTS: ENTITY RESOLUTION

- 2 entity creation (TGD) + 5 entity merging rules (EGD)
- 65% entities are sensible, 97% mergers are good



Number of entities per rule

Examples

RESULTS: KNOWLEDGE GRAPH

- 143k PDFs from Semantic Scholar for 17 Al venues
 - **73**k tables extracted
 - **31**M triples in graph
- All data available as public resources
 - data: <u>doi.org/10.5281/zenodo.3983013</u>
 - code: github.com/karmaresearch/tab2know

- **Bootstrapped** a KB from tables in scientific papers
 - learn from heuristics + reason with rules
- Outperformed previous method & introduced harder dataset
 - created KB with from 73k tables
- Future: quantify effort needed from experts
 - **goal**: create platform for task-specific KB extraction

code: <u>github.com/karmaresearch/tab2know</u> data: <u>doi.org/10.5281/zenodo.3983013</u>

BENNO KRUIT <u>kruit@cwi.nl</u>