
Extracting Novel Facts from Tables for
Knowledge Graph Completion

(Extended version)

Benno Kruit12, Peter Boncz1, and Jacopo Urbani2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 Dept. of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

{kruit, p.boncz}@cwi.nl; jacopo@cs.vu.nl

Abstract. We propose a new end-to-end method for extending a Knowl-
edge Graph (KG) from tables. Existing techniques tend to interpret ta-
bles by focusing on information that is already in the KG, and therefore
tend to extract many redundant facts. Our method aims to find more
novel facts. We introduce a new technique for table interpretation based
on a scalable graphical model using entity similarities. Our method fur-
ther disambiguates cell values using KG embeddings as additional rank-
ing method. Other distinctive features are the lack of assumptions about
the underlying KG and the enabling of a fine-grained tuning of the pre-
cision/recall trade-off of extracted facts. Our experiments show that our
approach has a higher recall during the interpretation process than the
state-of-the-art, and is more resistant against the bias observed in ex-
tracting mostly redundant facts since it produces more novel extractions.

1 Introduction

Motivation. Much of the world’s information exists as tabular data. These
are available as HTML tables on web pages, as spreadsheets, or as publicly
available datasets in many different formats. There has been more than a decade
of research in recognizing, cleaning and capturing these so-called web tables [4].
Because of their relational nature, such large collections of web tables are suitable
for supporting table search [32] or for answering specific factual queries [29]. In
certain web tables, the rows describe attributes or relationships of entities. This
makes them suitable sources for extending the coverage of Knowledge Graphs
(KGs), which is a task known as KG completion.

Problem. In order to perform KG completion from web tables, we must first
align their structure and content with the KG, a problem broadly referred to as
table interpretation. Table interpretation has been the subject of several prior
works [16,27,33,17,18,28,9,12]. Similar to our research, these works primarily
focus on the interpretation of entity tables, i.e., tables where each row describes
one entity and columns represent attributes. In this case, the interpretation
process consists of two operations. First, each row is linked with an entity in the

ar
X

iv
:1

90
7.

00
08

3v
2 

 [
cs

.I
R

] 
 1

5 
Ju

l 2
01

9



2 Benno Kruit, Peter Boncz, and Jacopo Urbani

KG, and optionally the entire table is linked to a class. Then, each column is
associated to a KG relation.

After the table is correctly interpreted, we can extract novel triples from the
table and add them to the KG. This last operation is also known as slot-filling,
as the empty ‘slots’ in the KG are filled with new facts [27]. Table interpretation
strongly affects the quality of slot-filling, since errors in the former can no longer
be corrected. Because of this, state-of-the-art table interpretation techniques
(an overview is given in Section 6) aim for high precision by pruning out many
potential assignments already at early stages. While high precision is desirable
in some contexts (e.g., table search), it has been observed [14] that this strategy
leads to a high number of redundant extractions during slot-filling, since only
the assignments to entities that are well-covered in the KG are retained.

Contribution. With the goal of maximizing the number of novel extractions
without sacrificing precision, we present a new method for KG completion from
web tables. In contrast to existing approaches, our method does not prune out
row-entity assignments, but performs the interpretation by performing inference
over all possible assignments using a Probabilistic Graphical Model (PGM). The
PGM uses label similarities as priors, and then updates its likelihood scoring to
maximise the coherence of entity assignments across the rows using Loopy Belief
Propagation (LBP). Coherence is not computed using a predefined metric (such
as class membership) but is automatically selected as a combination of properties
that are shared by the entities in the table. This is a novel feature of our method
which makes it capable of working with KGs with different topologies and/or
relations. Since we use both label similarities and coherence based on salient
common attributes, our method is able to maintain a high accuracy for the row-
entity assignments. At the same time, it is also able to return many more novel
extractions since we did not prune out any assignments.

We also propose an approach to perform slot-filling by disambiguating at-
tribute cells in a novel link-prediction framework. Our approach makes use of
embeddings of KG entities and relations to improve the quality of the disam-
biguation whenever label matching is not sufficient. This furthers our aim to find
novel facts for KG completion.

We compared our method to several state-of-the-art systems. Additionally,
we evaluated the performance of these systems with regard to the redundancy
of the facts that they extract from the tables. Our experiments on popular
benchmark datasets show that our approach yields slightly lower precision, but
significantly higher recall on entity predictions. This leads to many more novel
extractions than what is possible with existing methods. Finally, to test the
scalability of our method we perform a large-scale evaluation on 786K tables
from Wikipedia. An extended version of this paper is available at [15].

2 Background

KGs. A KG K is a repository of factual knowledge that can be seen as a
directed labeled graph where the nodes are entities and the edges represent



Title Suppressed Due to Excessive Length 3

semantic relations. We define K as a tuple (E ,R,F) where E is the set of entities
(nodes), R is the set of relations, and F is the set of facts (edges) in the graph.
Each entity is associated to a finite set of labels Labels(e). We use the notation
〈s, r, o〉 to denote a fact in F where s, o ∈ E and r ∈ R. Realistic KGs contain
facts of various types: For instance, they either indicate type memberships (e.g.,
〈Netherlands, type, Country〉), or encode more generic binary relations (e.g.,
〈Amsterdam, capitalOf, Netherlands〉), and are normally encoded in RDF [11].

Table Interpretation. Tables represent an important source of knowledge
that is not yet in the KG. A class of tables that is particularly useful for enriching
KGs is the one that contains entity tables, i.e., tables where one column contains
the name of entities (the key-column) and all others contain the entity attributes.
While these tables ostensibly contain structured data, the textual content of
cells and identifiers is created more with the aim of human interpretation than
automatic processing. To capture the semantics of these tables in a coherent
and structured way, it is useful to link their content to concepts in the KG.
We refer to this task as table interpretation, mapping each row and attribute
column to entities and relations respectively. These mappings can be computed
by determining (1) which entities in the KG are mentioned in the table, (2) which
are the types of those entities, and (3) which relations are expressed between
columns (if any) [16,30,17,26,33]. After the interpretation is finished, we can use
the mappings to construct facts for the KG. We call this operation slot-filling.

Example 1. Consider an example KG with five entities {Netherlands, Country,
Amsterdam, City, capitalOf} and a table X which contains a row r with cell
values r[1] = “Holland” and r[2] = “A’dam”. The first cell value should be
mapped to the entity Netherlands, while the second should be mapped to the
entity Amsterdam. The mapping is not trivial because a string can map to mul-
tiple entities, e.g., “Holland” can refer either to the county or to 19 different
cities in the U.S. The task of table interpretation consists of disambiguating the
correct meaning intended in the table. Furthermore, if the other rows in the
table also contain countries and their capital cities, then the system should infer
that all these entities are instances of classes such as Country and City, and the
relation between the columns should be capitalOf. With slot-filling, our goal is
to extract statements like 〈Amsterdam, capitalOf, Netherlands〉 from the table
so that they can be added to the KG.

PGMs. In this paper, we employ Probabilistic Graphical Models (PGMs) to
perform the interpretation. PGMs are a well-known formalism for computing
joint predictions [21]. For a given set of random variables, conditional depen-
dences between pairs of variables are expressed as edges in a graph. In these
graphs, variables are connected if the value of one influences the value of an-
other. The connection is directed if the influence is one-way, and undirected if
both variables influence each other. The behaviour of the influence on every
edge is expressed by a function known as the potential function. When perform-
ing inference in a PGM, information from the nodes is propagated through the



4 Benno Kruit, Peter Boncz, and Jacopo Urbani

Year Title Director
1931 M Fritz Lang
1970 M*A*S*H Robert Altman
1942 The Magnificent Ambersons Orson Welles
1968 The Producers Mel Brooks
1994 The Professional Luc Besson

Title

subj
ect

su
bj
ec
t

producer

director

The_Producers_(2005_film)

The_Producers_(1968_film)
Mel Brooks

American_satirical_films
M*A*S*H_(TV_series)

M*A*S*H_(TV_series)
MASH_(film)

6 12

M*A*S*H_(TV_series)
MASH_(film)

The_Producers_(2005_film)
The_Producers_(1968_film)

9

(a) Example Table of Films (b) Row Candidates (c) Attributes in the KB

(d) Loopy Belief  
Propagation

(d1) Nodes: Row- 
Candidate Scores L

(d2) Edges: Entity 
Similarities S

(e) Row-independent Candidate Scores q

M*A*S*H_(TV_series)
MASH_(film)

9

The_Producers_(2005_film)
The_Producers_(1968_film)

9(f) Posterior Candidate Scores C

MASH_(film)

Fig. 1: Schematic representation of our method.

network using the potential functions in order to determine the final distribution
of the random variables.

KG Embeddings. We also make use of latent representations of the KG [20]
to filter out incorrect extractions. In particular, we consider TransE [3], one
of the most popular methods in this category. The main idea of TransE is to
“embed” each entity and relation into a real-valued d-dimensional vector (where
d > 0 is a given hyperparameter). The set of all vectors constitutes a model Θ of
|E|d+ |R|d parameters which is trained so that the distance between the vectors
of entities which are connected in K is smaller than the distance between the
ones of entities which are not connected.

Training Θ is done by minimizing the loss function

LΘ =
∑

〈s,r,o〉∈F

∑
〈s′,r,o′〉∈S〈s,r,o〉

[γ + d(s + r,o)− d(s′ + r,o′)]+ (1)

where: s, s′,o,o′, r are the vectors associated to the entities s, s′, o, o′ and type r
respectively; γ ≥ 0 is an hyperparameter that defines the minimum acceptable
margin; d(·) is a distance function (typically the L1 norm), [x]+ returns the
positive part of x, and S〈s,r,o〉 = {〈s, r, o′〉 | 〈s, r, o′〉 /∈ F}∪ {〈s′, r, o〉 | 〈s′, r, o〉 /∈
F}, i.e., it is a set of “corrupted” facts which are not in K. Once training is
completed, the model can be used to perform link prediction, i.e., to estimate
the likelihood of unseen facts: if the distance of these facts is small, then these
are more likely to be true.

3 Table Interpretation

We introduce our method for performing table interpretation. Fig. 1 shows the
computation that takes place during the interpretation, using table (a) as a



Title Suppressed Due to Excessive Length 5

motivating example. In this case, the key-column is the second one (“title”) but
its content is ambiguous since the values can refer to movies, TV series, or books.
For instance, the second row can refer to the TV serial M*A*S*H or to the movie
MASH, as is shown in Fig. 1b. The goal of this task is to map as many rows ρ as
possible to corresponding entities in E and each column c to one relation in R.
To this end, we perform a sequence of five operations, described below.

3.1 Step 1: Candidate Entity Selection

First, we identify the key-column (if any) using the heuristics proposed by [26],
which consists of selecting the column with most unique non-numeric values
breaking ties by choosing the leftmost one. This heuristics works well in practice
so we apply it without modifications. Only the tables with valid key columns are
considered since these are the only ones for which we can (potentially) extract
factual knowledge.

For every cell in the key column, we then select a set of entity candidates.
We represent this computation with the function Cand(ρ) which takes in input a
generic row ρ and returns all entities in E which are potential candidates with ρ.
This function is implemented by 1) indexing all the labels in K, 2) retrieving the
labels which contain the cell value of the key column, 3) returning the entities
associated to the labels. Let e ∈ Cand(ρ) be a potential entity candidate for row
ρ. We call the tuple (ρ, e) a row-entity assignment. If Cand(ρ) is empty, then
ρ is ignored. Otherwise, the table interpretation process will determine which
row-entity assignment should be selected.

Example 2. In the table (a) of figure 1, we assume that the first column is the
key column, because it is the leftmost column with non-numeric unique values.
The label index returns a set of scored candidate entities per row (b).

The label matches are ranked using length-normalised smoothed TF-IDF. In
our case, the query corresponds to the cell value of the key column, while the
documents are all labels in K. Identically to [26], we (1) take only the first result
if it is much better than the next and (2) take the top three labels otherwise.
The final set of candidates consists of all entities associated with these labels.

Typically entities are explicitly linked to labels with direct relations (e.g.,
rdfs:label [11]). However, more links can be retrieved if we also consider
titles and disambiguation pages. In our approach, we add also these labels to
the index because we observed that this leads to a substantial increase of the
recall. At this stage, it is important to have a high recall because the subsequent
operations cannot recover in case we fail to retrieve the correct mapping. In the
definitions below, we denote these sets of labels for each entity as Labels(e).

3.2 Step 2: Computation of the Priors

In this step, we compute a score of the row-entity assignments by comparing all
cell values in the row with all the labels of entities that are connected to the



6 Benno Kruit, Peter Boncz, and Jacopo Urbani

candidate entities. To this end, we first define attribute links, and related labels
of an entity e as

Links(e) = {〈r, v〉 | 〈e, r, v〉 ∈ F} (2)

LinkLabels(e, r) = {l | 〈r, v〉 ∈ Links(e), l ∈ Labels(v)} (3)

Intuitively, Links(e) contains all links of e while LinkLabels(e, r) represents the
labels at the other end of the r-links from e. Then, we introduce the function

Match(c, ρ, e, r) = max
s∈Cell(c,ρ)

max
l∈LinkLabels(e,r)

TokenJaccard(s, l) (4)

to compute the highest attainable string similarity between the cell at col-
umn c and row ρ and the values of the r-links from e. Here, Cell(i, j) re-
turns the content of the cell at row i and column j in a table with n rows

and m columns, while TokenJaccard is the Jaccard index J(A,B) = |A∩B|
|A∪B|

of the tokens in each string. For instance, in the table in Fig. 1 each cell
is matched to each attribute of the corresponding row-entity candidates, e.g.,
Match(3, 4, The Producers (1968 film), director) is the score that quantifies
to what extent the content of the cell at coordinates (3, 4) matches the string
“Mel Brooks”, which is the label of the director of the film. Note that we treat
the content of every cell as a string. There are some approaches that use type-
specific cell and column matching methods [26,22,33,16], but a combination of
our method with these techniques should be seen as future work.

We can now compute likelihood scores for mapping cells to relations (Eq. 5),
and for mapping columns to relations (Eq. 6) to aggregate and normalise these
scores on the row and column levels respectively:

CellScore(c, ρ, r) =
1

|Cand(ρ)|
∑

e∈Cand(ρ)

Match(c, ρ, e, r) (5)

ColScore(c, r) =

∑n
i=0 CellScore(c, ρi, r)∑n

i=0

∑
r′∈R CellScore(c, ρi, r′)

(6)

For instance, in Fig. 1a, CellScore(4, 3, director) returns the likelihood that
the cell (4,3) matches the relation director, while ColScore(3, director) returns
the aggregated scores for column 3 considering all rows in the table.

Since ColScore(c, r) is the likelihood score that column c maps to relation r,
we can use this value to construct the prior distribution of all assignments to
c. Furthermore, we can use these scores to refine the likelihood of the possible
row-entity matchings. We compute such likelihood as

RowScore(ρ, e) =
1

m

m∑
i=0

max
r∈R

ColScore(ci, r)×Match(ci, ρ, e, r) (7)

In essence, Eq. 7 computes the likelihood of an entity-row matching as the av-
erage best product that each cell matches to a certain attribute (r, e) (Match(·))
with the general likelihood that the column matches to r (ColScore(·)). We use
the values of RowScore to build a prior distribution for all entity-row matches.



Title Suppressed Due to Excessive Length 7

3.3 Step 3: Entity Similarity Scores

Both prior distributions computed with Eqs. 5 and 6 rely on the Jaccard Index.
Thus, they are distributions which are ultimately built on the string similarities
between the strings in the cells and the entities’ labels. We use these scores to
compute similarity scores between pairs of candidate entities across the rows.
In the next step, we will use these similarities to compute better entity-row
likelihood scores than the ones of Eq. 7.

First, we weigh all links 〈r, v〉 depending on their popularities across the
entities in the table and the corresponding prior of the assignments that use
them. To this end, we define the function LinkTotal as

LinkTotal(r, v) =

n∑
i=0

max
e∈Cand(ρi)

RowScore(ρi, e)[〈r, v〉 ∈ Links(e)] (8)

where [x] returns 1 if x is true or 0 otherwise. Note that since RowScore returns
a value between 0 and 1, LinkTotal(·) returns n in the best case.

Then, we represent the coverage and saliency of 〈r, v〉 by normalising the
value LinkTotal(r, v) with respect to the table and the KG:

Cover(r, v) =
LinkTotal(r, v)∑n

i=1[〈r, v〉 ∈ ∪e∈Cand(ρi)Links(e)]
(9)

Salience(r, v) =
LinkTotal(r, v)

|{e ∈ E | 〈r, v〉 ∈ Links(e)}|
(10)

Intuitively, Cover(·) computes the popularity of 〈r, v〉 among the rows of the
table, while Salience(·) considers all entities in K. We combine them as

LinkScore(r, v) = Cover(r, v)× Salience(r, v) (11)

so that we can rank the attributes depending both on their coverage within the
table and popularity in the KG. This combination allows us to give low ranks
to attributes, like 〈isA,Resource〉, which should not be considered despite their
high coverage since they are not informative. In contrast, it can boost up the
score of attributes with a medium coverage in case they have a high saliency.

Finally, we use the scores from Eq. 11 to compute a similarity score between
pairs of entities. We compute the similarity between entities e1 and e2 as

EntitySimilarity(e1, e2) =
∑

〈r,v〉∈Links(e1)∩Links(e2)

LinkScore(r, v) (12)

3.4 Step 4: Disambiguation

Now, we compute which are the row-entity assignments which maximise the
coherence in the table, i.e., maximise the similarity between the entities. These
assignments are determined using Loopy Belief Propagation (LBP) [21].



8 Benno Kruit, Peter Boncz, and Jacopo Urbani

We model each row-entity prediction as a categorical random variable, for
which the label score RowScore(ρ, e) is the prior distribution (Fig. 1d1). For con-
venience, we can view these scores as a sparse matrix L of size n × |E|. The
variables are connected to each other with the edge potentials being defined
by entity-entity similarities EntitySimilarity(e1, e2) (Fig. 1d2; equivalently repre-
sented by a matrix S), which forms a complete graph. Since this graph has loops
it is not possible to perform exact inference. Therefore we approximate it by ex-
ecuting LBP. Additionally, all our edge potentials are identical. This causes all
nodes to receive identical information from each other. Instead of having sepa-
rate messages for each node, we thus have a single vector-valued message that
provides the belief updates for our nodes:

qe =

n∏
ρ=0

∑
e′∈Cand(ρ)

Lρ,e′ × Se,e′ =

n∏
ρ=0

(LS)ρ,e (13)

Cρ,e = Lρ,e × qe (14)

where qe indicates how similar entity e is to all weighted candidates of all rows,
and Cρ,e is the coherence score of entity e for row ρ (Figs. 1e and 1f respectively).
Because the main operation consists of a single matrix multiplication, computa-
tion is fast and can be parallelized by standard matrix processing libraries.

LBP can be run for multiple iterations (in our case, replacing Lρ,e′ by Cρ,e′),
but is not guaranteed to converge [21]. In fact, we observed that sometimes
an excessive number of iterations led to suboptimal assignments. This occurred
when the entity similarity scores (Eq. 12) were not accurate due to missing
attributes in the KG and ended up “overriding” the more accurate priors that
were computed considering only label similarities (Eq. 7) when they are combined
in the following step. From our experimental analysis, we observed that in the
overwhelming majority of the cases a single iteration of LBP was enough to
converge. Therefore, we apply Eq. 14 only once without further iterations.

As we can see from Eq. 14, the selection of the entity for row ρ relies on two
components, L and q: The first takes into account to what extent the entity
label matches the label of candidate entities and to what extent the labels of
the attributes matches with the remaining cell values. The second considers the
coherence, i.e., the mappings that maximise the similarity between the entities.

Finally, we disambiguate rows by choosing the highest-rated candidate êρ =
argmaxe Cρ,e. Then, we re-calculate ColScore(c, r) with the updated set of can-
didates containing only the predicted entity Cand(ρ) = {êρ} and disambiguate
columns by choosing the highest scoring relation r̂c = argmaxr ColScore(c, r).
After this last step is computed, our procedure has selected one entity per row
and one relation per attribute column. In the next section, we discuss how we
can extract triples from the table.

4 Slot-Filling

After the table is interpreted, we can extract partial triples of the form 〈s, r, ?〉
where s are the entities mapped to rows and r are the relations associated to



Title Suppressed Due to Excessive Length 9

columns. If the cell contains numbers or other datatypes (e.g., dates) that we
can add the cell value to the KG as-is, but this is inappropriate if the content of
the cell refers to an entity. In this case, we need to map the content of the cell
to an entity in the KG.

The disambiguation of the content of a cell could be done by querying our
label index precisely the same way as done in Sec. 3.1. However, this extraction
is suboptimal since now we have available some context, i.e., 〈s, r, ?〉 that we
can leverage to refine our search space. To this end, we can exploit techniques
for predicting the likelihood of triples given the KG’s structure, namely KG
embeddings provided by the TransE algorithm [3]. Given in input ei, i.e., the
entity associated to row i and rj , i.e., the relation associated to column j, our
goal is to extract a fact of the form 〈ei, rj , x〉 where entity x is unknown. We
proceed as follows:

1. We query the label index with the content of Cell(i, j) as done for the computa-
tion of Cand(·) in Sec. 3.1. This computation returns a list of entity candidates
〈e1, . . . , en〉 ranked based on label string similarities.

2. For each candidate ek ∈ 〈e1, . . . , en〉, we compute Rank(k) = d(ei + rj , ek)
where d is the distance measure used to compute the TransE embeddings (we
use the L1 norm), and ei, rj, ek are the TransE vectors of ek, rj , ei respectively.

3. We return 〈ei, rj , ek〉 where ek is the entity with the lowest Rank(k), i.e, has
the closest distance hence it is the triple with the highest likelihood score.

5 Evaluation

We implemented our method into a system called TAKCO (TAble-driven KG
COmpleter). The code is available online3.

Our implementation uses two additional systems: Trident4, an in-house triple
store to query the KG; and Elasticsearch 6.4.2, a well-known system used for
building and querying the label index. Moreover, we reimplemented the TransE
algorithm for creating the KG embeddings. Since our KGs contain millions of
nodes and edges, we parallelized the learning using Hogwild! [24] (we empir-
ically verified that this form of parallelism does not affect the quality of the
embeddings).

Baselines. Since our goal is to extract novel facts from tables, we considered
existing systems that perform slot-filling as baselines. In particular, we consid-
ered the systems T2K Match [26] and TableMiner+ [33] because of their
state-of-the-art results. There are other systems that implement only parts of
the pipeline, for instance entity disambiguation (see Section 6 for an overview).
An important system in this category is TabEL [2], which exploits co-occurrences
of anchor links to entity candidates on Wikipedia pages for predicting a coherent
set of entities. Although such system can potentially return better performance

3 https://github.com/karmaresearch/takco
4 https://github.com/karmaresearch/trident

https://github.com/karmaresearch/takco
https://github.com/karmaresearch/trident


10 Benno Kruit, Peter Boncz, and Jacopo Urbani

on entity disambiguation, we did not include it in our analysis due its reliance on
additional inputs. A comparison between the performance of our method for the
subtask of entity disambiguation, and more specialized frameworks like TabEL
should be seen as future work.

The system T2K Match implements a series of matching steps that match
table rows to entities, using similarities between entity property values and the
table columns. The TableMiner+ system consists of two phases that are al-
ternated until a certain confidence level has been reached. Note that these ap-
proaches primarily focus on table interpretation. In contrast, we provide an end-
to-end system which considers also the operation of slot-filling.

The first system is designed to work with a specific subselection of DBpe-
dia [1] while the second system was originally built to use the Freebase API. We
have performed some slight modifications to their source code so that we could
perform a fair comparison. For T2K Match, we modified the system to be able
to use an augmented set of candidates so that in some experiments we could
measure precisely the performance of table interpretation. For TableMiner+,
we modified the system so that we could use different KGs without API access.

Knowledge Graphs. Our method can work with any arbitrary KG. We
consider DBpedia (so that we could compare against T2K Match) which is a
popular KGs created from Wikipedia and other sources. We use two versions
of DBpedia: The first is the triple-based version of the tabular subset used by
T2K Match. This is a subset of DBpedia from 2014 and we consider it so
that we can perform an exact comparison. It contains 3.4M entities and 28M
facts. Additionally, we also use the latest version of the full KG (version 2016-
10). The full DBpedia contains 15M entities (including entities without labels
and redirected entities) and 110M facts. Finally, we compare our performance
using Wikidata (“truthy” RDF export, acquired on Oct 2018), which has 106M
entities and 1B facts. For evaluation, we map the gold standard to Wikidata
using owl:sameAs links from DBpedia.

Testsets. To the best of our knowledge, there are two openly available datasets
of tables that have been annotated for the purpose of table interpretation. The
first one is the T2D dataset [26], which contains a subset of the WDC Web
Tables Corpus – a set of tables extracted from the CommonCrawl web scrape5.
We use the latest available version of this dataset (v2, released 2017/02). In
our experiments, we disregarded tables without any annotation. The resulting
dataset contains 238 entity tables with 659 column annotations and 26106 row-
entity annotations. Throughout, we refer to this dataset as T2D-v2.

The second dataset is Webaroo, proposed by [16]. Tables in this dataset were
annotated with entities and relations in YAGO. While these tables are a less
varied sample of the ones in the T2D, they allow us to study the behaviour of
the systems on a dataset with different annotations. This dataset contains 429
entity tables with 389 and 4447 column and row-entity annotations respectively.
In order to test the performance of T2K Match with this dataset, we “ported”

5 http://webdatacommons.org/webtables/

http://webdatacommons.org/webtables/


Title Suppressed Due to Excessive Length 11

the YAGO annotations to DBpedia using the Wikipedia links they refer to.
Finally, we tested the scalability of our system by running it on a large set of
Wikipedia tables [2]. Instructions to obtain these datasets are available in the
code repository of our system.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.7

0.8

0.9

1.0

P
re

ci
si

on

T2KMatch

TableMiner+

Ours (T2K candidates)

Ours (DBpedia subset)

Ours (Full DBpedia)

Ours (Wikidata)

(a) Performance tradeoff, T2D-v2

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.7

0.8

0.9

1.0

P
re

ci
si

on
(b) Performance tradeoff, Webaroo

System Pr. Re. F1

T2KMatch .94 .73 .82
TableMiner+ .96 .68 .80
Ours (T2K candidates) .88 .72 .79
Ours (DBpedia subset) .90 .76 .83
Ours (Full DBpedia) .92 .86 .89
Ours (Wikidata) .87 .82 .84

(c) Row-entity evaluation, T2D-v2

System Pr. Re. F1

T2KMatch .88 .55 .67
TableMiner+ .85 .51 .63
Ours (T2K candidates) .74 .58 .65
Ours (DBpedia subset) .72 .59 .65
Ours (Full DBpedia) .88 .84 .86
Ours (Wikidata) .77 .71 .74

(d) Row-entity evaluation, Webaroo

Fig. 2: Row-entity evaluation scores and precision-recall tradeoff for the T2D-
v2 and Webaroo datasets (the isolines of constant F1 score are shown in grey).
Precision, recall, and F1 are calculated at the threshold of maximum F1.

5.1 Table Interpretation

We evaluate the performance of determining the correct row-entity assignments,
which are the key output for table interpretation. Fig. 2b,d and Fig. 2a,c re-
port a comparison of the performance of our method against the baselines. We
measure the precision/recall tradeoff (obtained by altering the threshold value
for accepting mappings), and precision, recall, and F1 (shown at the threshold
of maximum F1) on all predictions. The precision decreases whenever a system
makes a wrong prediction while the recall is affected when no entity is selected.
Not predicting a match for a row can have several causes: the candidate set for
that row might have been empty, the annotated entity might not have been in
the KG (this occurs when we use a subset), or when all candidates have been
pruned away during the interpretation (this occurs with the baselines).



12 Benno Kruit, Peter Boncz, and Jacopo Urbani

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.7

0.8

0.9

1.0

P
re

ci
si

on

Only explicit labels

Explicit + disambiguations

Expl. + disamb. + redir.

System Pr. Re. F1

Only explicit labels .85 .69 .76
Explicit + disambiguations .84 .79 .81
Expl. + disamb. + redir. .92 .86 .89

Fig. 3: Row-entity evaluation scores and precision-recall tradeoff of our approach
given different label sources, on T2D-v2.

In these experiments, we configured our system with three different settings:
First, we use the same KG and the candidates (i.e., the output of Cand(·))
used by the other two systems. We refer to this setting as “T2K candidates”.
Then, we use the KG subset used by T2K Match in our own label index
and disambiguation (“DBpedia subset”). Finally, we use our own candidate set
generation and full KG (“Full DBpedia”). By evaluating the performance of our
method with these settings, we can compare the performance of our approach
given the limitations of the inputs that the other systems face.

From the results reported in the figures, we can make a few considerations.
First, our method returns a comparable recall but an inferior precision than
the baselines if we use the set of candidates from T2K Match, but is able to
match its performance in terms of F1 when using the same KG. However, the
baselines are limited with respect to KGs. In fact, T2K Match requires that
DBpedia is translated into a tabular format while our method does not have
this restriction. If our method is configured to use the full DBpedia KG, then
it returns the highest recall with only a small loss in terms of precision. This
translates in a significantly higher F1 score than the best of the baselines. These
are positive results since a high recall is important for extracting novel facts.

While the precision of our system is low in the limited-input setting, many
of the errors that it makes are due to problems with the candidate set and the
KG. Therefore, we evaluated a scenario (not shown in the figures of this paper)
in which we artificially expanded the candidate set to always include the gold
standard. This means we are artificially making use of a “perfect” candidate
index. Even with this addition, T2K Match is unable to use these candidates
for prediction and returns the same results. In contrast, manually adding them
to our system leads to both a notably higher recall and precision.

This indicates that our method is sensitive to the candidate generation, i.e.,
to the very first selection of candidates using the index label. To evaluate how
our system behaves with richer label indices, we evaluated our method on T2D-
v2 with three different label indices. The first index only uses the explicit labels
of the entities. The second one includes also the labels that we obtain from
redirect pages in Wikipedia. The third one adds also the labels we obtain from



Title Suppressed Due to Excessive Length 13

the disambiguation pages. The results of this experiment are reported in Fig. 3.
As we can see from these results, including more labels per entity significantly
improves both the precision and recall of our system.

System Redundant Novel
Pr. Re. F1 Pr. Re. F1

T2KMatch .84 .82 .83 .76 .66 .71
TableMiner+ .86 .73 .79 .73 .56 .63
Ours (T2K candidates) .81 .84 .83 .61 .71 .66
Ours (DBpedia subset) .83 .90 .86 .59 .76 .66
Ours (Full DBpedia) .83 .96 .89 .70 .83 .76

(a) The scores for extracting novel and redundant triples from
T2D-v2, measured at the acceptance threshold of maximum F1.

0.0 0.2 0.4 0.6 0.8 1.0

Redundant Recall

0.7

0.8

0.9

1.0

R
ed

u
n

d
an

t
P

re
ci

si
on

0.0 0.2 0.4 0.6 0.8 1.0

Novel Recall

N
ov

el
P

re
ci

si
on T2KMatch

TableMiner +

Ours (T2K candidates)

Ours (DBpedia subset)

Ours (Full DBpedia)

(b) The precision-recall tradeoff curve on T2D-v2.

Fig. 4: The novel and redundant precision-recall tradeoff for the T2D-v2 dataset
(in gray, the isolines of constant F1 score). Unlike the experiments in the previous
figures, here the bias towards extracting known (redundant) facts is made explicit
and we focus on finding novel KG facts in web tables.

5.2 Measuring Redundancy

Current systems (e.g., [26,33]) were evaluated against a set of manual annota-
tions, and scored on the individual subtasks of table interpretation. Such evalua-
tion did not consider the novelty of facts that the system has extracted. In other
words, no difference was made between predictions of already known facts or new
knowledge, but this difference is important in our context. In order to fill this
gap, we need to distinguish between these cases when measuring performance.

Given in input a KG K = (E ,R,F), an extraction technique like ours is
expected to yield a new set of predicted facts FP over E and R from an input
source like web tables. If we have gold standard table annotations, we can gen-
erate another set of facts FG and use them for evaluating how many facts in FP
are correct. Note that both FP and FG might contain facts that are either in



14 Benno Kruit, Peter Boncz, and Jacopo Urbani

F or not. So far, current techniques have been evaluated w.r.t. the set of true
positives FG ∩ FP (correctly extracted facts) and false negatives as FG \ FP
(valid facts that were missed). These measures do not take the redundancy of
the extracted facts into account, while the redundant information exceeds the
novel information for benchmark datasets [14].

In Fig. 4, we show the evaluation of the correctness of novel and redundant
facts separately. Crucially, our system significantly outperforms the baselines
with respect to the recall of novel facts, which is paramount to KG completion.
In the tradeoff curve for novel triples (Fig. 4b), we also outperform the state-of-
the-art regarding precision for most threshold values.

5.3 Slot-filling

To test the scalability of our system, we have run it on all 1.6M tables in the Wik-
itable dataset. The first step concerns detecting entity tables with key columns
that contain entity labels. This process returned 786K tables. Then, we pro-
ceeded with the retrieval of entity candidates. About 288K tables did not contain
any entity in DBpedia, thus were discarded. The table interpretation process was
launched on the remaining 498K tables. Our approach is trivially parallelizable,
and runs in 391 ms per table on average.

Ranking Dataset Prec@1 Prec@3

Only Label Index (TF-IDF score) Wikitable 0.37 0.42
T2D-v2 0.24 0.31

Labels + Embeddings (TransE) Wikitable 0.61 0.72
T2D-v2 0.62 0.74

Table 1: Precision of slot-filling with/out KG embeddings, calculated on redun-
dant extractions.

From these tables, we extracted 2.818.205 unique facts for 1.880.808 unique
slots of the form 〈s, r, ?〉. Of those slots, 823.806 already contain at least one
entity o in the KG. However, we do not know whether our extractions are re-
dundant, or t represents a new extraction that should be added to the existing
ones in the KG. To determine the novelty, we queried the label index for every
extracted fact and discovered that in 307.729 cases the labels were matching.
We can assume these extracted facts to be redundant. From these numbers, we
conclude that our extraction process has produced about 1.6M extractions for
which we have no evidence of redundancy and thus can be considered as novel.
A manual analysis over a sample confirmed this conclusion.

Finally, we evaluated the effectiveness of our procedure for re-ranking the
extractions using the KG embeddings on the Wikitable and T2D-v2 datasets. To
this end, we compare the näıve index-based ranking obtained by simply picking



Title Suppressed Due to Excessive Length 15

the top result returned from the label index against our strategy or re-ranking
considering the distance of the corresponding embeddings (Sec. 4). We chose
to measure the precision for the first or top-3 ranked candidates since this is a
standard metric used to evaluate the performance of link prediction [20].

Since we need to know the correct entity, we restricted this analysis to the
redundant extractions (i.e., the ones already in the KG) and disregarded the
novel ones. Tab. 1 reports the results both when we consider only the best result
and the top three. We see that that our embedding-based ranking outperforms
the index-based ranking in both cases, and predicts the correct entity at the top
of the ranking in 61% of the time, compared to 37% for the Wikitable dataset.
Moreover, the relatively low results obtained with the index-based ranking strat-
egy indicate that labels are in general not reliable for disambiguating attributes.

6 Related Work

The first system for interpreting web tables was introduced by Limaye et al. [16].
The system uses a probabilistic graphical model that makes supervised predic-
tions based on a large number of features. Subsequent work approached the
problem with a task-specific knowledge graph [30,31] and sped up predictions
by limiting the feature set [17] or using distributed processing [10]. Others used
an entity label prior from hyperlinks on the web [2], and interpreted tables in
limited domains [23].

A separate family of table interpretation systems limit themselves to at-
tribute matching. The simplest approaches perform string similarities between
the column headers and relation names or cell values and entity labels [8]. When
no overlap between the table and KG can be assumed at all, the work at [22]
uses supervised models based on features of the column header and cell values.
Some approaches focus on matching tables to relation from Open Information
Extraction [30,31] or exploit occurrences of cell value pairs in a corpus of text
[28,5], and others perform supervised learning [22,9]. While several approaches
have been proposed that are limited to entity linking [7,2], the focus of our work
is to optimize table interpretation for novel fact extraction.

The systems evaluated in this paper are designed for open-domain table in-
terpretation. In closed-domain settings, assumptions can reduce the redundancy
of extractions. For example, the work of [23] models the incompleteness in the
domain subset of the KG by estimating class probabilities based on relations
between entities, which the limited domain makes tractable. The systems of [31]
and [30] use a probabilistic KG created from a web corpus for supporting table
search. This type of KG offers many strategies for improving the recall of new
knowledge because it allows for an explicit model of low-confidence facts.

Several models use large web text corpora in addition to the information from
the KG. The work by Bhagavatula et al. [2] uses the anchor text of hyperlinks
on the web to create a prior for instance matching that takes the popularity of
entities into account. Additionally, it exploits co-occurrences of anchor links to



16 Benno Kruit, Peter Boncz, and Jacopo Urbani

entity candidates on Wikipedia pages for predicting a coherent set of entities. The
work of [28] creates a set of syntactic patterns from the ClueWeb09 text corpus
featuring entities from relations in the KG. Given query pairs of entities from
tables, the syntactic patterns from text featuring the query pair are matched to
the patterns in the set. A probabilistic model then allows for the prediction of
relations from the KG. A similar approach is taken by [5], who use a language
model instead of extracted syntactic patterns. This approach queries a search
engine with the entity pair, and classify the text that occurs between the entity
mentions. A separate direction is the matching of numeric columns, either with
metrics for numeric distribution similarity [19] or sophisticated ontologies of
quantities and statistical models [12].

The survey at [13] discusses approaches and challenges to the slot filling task
in the context of textual information extraction. Most systems use distant su-
pervision for textual pattern learning, and some employ cross-slot reasoning to
ensure the coherence of multiple extracted values. Recently, work on Univer-
sal Schemas by Riedel et al. [25] has allowed the joint factorisation of textual
extractions and KB relations and this boosts slot-filling precision.

In the field of data fusion, systems explicitly aim for high recall and use a
post-processing filter to improve precision. In [18], the extracted facts are filtered
using machine learning models, and in [6] they are filtered using a sophisticated
statistical model of the KG. In [27], the system of [26] is used to interpret a
large collection of web tables, after which the extracted facts are filtered using
several strategies. However, only 2.85% of web tables can be matched, which is
attributed to a topical mismatch between the tables and the KG.

7 Conclusion

We investigate the problem of extending KGs using the data found in Web
tables. Existing approaches have focused on overall precision and recall of facts
extracted from web tables, but it is important for the purpose of KG completion
that the extraction process returns as many (correct) novel facts as possible.

We developed and evaluated a new table interpretation method to counter
this problem. Our method uses a flexible similarity criterion for the disambigua-
tion of entity-row matches, and employs a PGM to compute new likelihood scores
depending on how the various candidates are similar to each other to maximise
the coherence of assignments. Because it combines the syntactic match between
the tables and the KG with the coherence of the entity predictions, it can confi-
dently predict more candidates for which the attributes in the table are not yet
in the KG. Consequently, it extracts more novel facts for KG completion. For the
task of slot-filling, we introduced a novel approach for attribute disambiguation
based on KG embeddings, which outperforms a naive label-based approach.

We compared our method to two state-of-the art systems, and performed an
extensive comparative evaluation on multiple knowledge bases. Our evaluation
shows that our system achieves a higher recall during the interpretation process,



Title Suppressed Due to Excessive Length 17

which is necessary to extract novel information. Furthermore, it is able to extract
more (correct) facts that are not yet in the KG.

Interesting directions for future work include the development of extensions
for tables where the entity is identified by multiple columns or where rows do
not necessarily describe entities. In particular, the heuristics for determining the
key column of the table (and whether such a column is present) would need to
be replaced by a model that reliably detects the type of table. Moreover, the
inclusion of external sources can be useful to extract more novel information
from the table. Finally, despite the remarkable work by different research teams
to produce good benchmark datasets, there is still the need for larger and more
diverse benchmarks to further challenge the state-of-the-art.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: The semantic web, pp. 722–735. Springer
(2007)

2. Bhagavatula, C.S., Noraset, T., Downey, D.: TabEL: Entity Linking in Web Tables.
In: Proceedings of ISWC. pp. 425–441 (2015)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translat-
ing Embeddings for Modeling Multi-relational Data. In: Proceedings of NIPS. pp.
2787–2795 (2013)

4. Cafarella, M., Halevy, A., Lee, H., Madhavan, J., Yu, C., Wang, D.Z., Wu, E.: Ten
years of webtables. Proceedings of VLDB 11(12), 2140–2149 (2018)

5. Cannaviccio, M., Barbosa, D., Merialdo, P.: Towards Annotating Relational Data
on the Web with Language Models. In: Proceedings of WWW. pp. 1307–1316
(2018)

6. Dong, X.L., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge Vault: a Web-scale Approach to Probabilistic
Knowledge Fusion. In: Proceedings of KDD. pp. 601–610 (2014)

7. Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M., Christophides, V.: Match-
ing Web Tables with Knowledge Base Entities: From Entity Lookups to Entity
Embeddings. In: Proceedings of ISWC. pp. 260–277 (2017)

8. Efthymiou, V., Hassanzadeh, O., Sadoghi, M., Rodriguez-Muro, M.: Annotating
Web Rables Through Ontology Matching. In: Proceedings of OM at ISWC. pp.
229–230 (2016)

9. Ermilov, I., Ngomo, A.C.N.: TAIPAN: Automatic Property Mapping for Tabular
Data. In: Proceedings of EKAW. pp. 163–179 (2016)

10. Hassanzadeh, O., Ward, M.J., Rodriguez-Muro, M., Srinivas, K.: Understanding a
Large Corpus of Web Tables Through Matching with Knowledge Bases: an Em-
pirical Study. In: Proceedings of OM at ISWC. pp. 25–34 (2015)

11. Hayes, P.: RDF Semantics. W3C Recommendation. Available at
http://www.w3.org/TR/rdf-mt/ (2004)

12. Ibrahim, Y., Riedewald, M., Weikum, G.: Making Sense of Entities and Quantities
in Web Tables. Proceedings of CIKM pp. 1703–1712 (2016)

13. Ji, H., Grishman, R.: Knowledge base population: Successful approaches and chal-
lenges. In: Proceedings of the 49th annual meeting of the association for computa-
tional linguistics: Human language technologies-volume 1. pp. 1148–1158. Associ-
ation for Computational Linguistics (2011)



18 Benno Kruit, Peter Boncz, and Jacopo Urbani

14. Kruit, B., Boncz, P., Urbani, J.: Extracting New Knowledge from Web Tables:
Novelty or Confidence? In: Proceedings of KBCOM (2018)

15. Kruit, B., Boncz, P., Urbani, J.: Extracting Novel Facts from Tables for Knowledge
Graph Completion (Extended version). arXiv e-prints arXiv:1907.00083 (2019)

16. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and Searching Web Tables
Using Entities, Types and Relationships. PVLDB 3(1-2), 1338–1347 (2010)

17. Mulwad, V., Finin, T., Joshi, A.: Semantic Message Passing for Generating Linked
Data from Tables. In: Proceedings of ISWC. pp. 363–378 (2013)

18. Muñoz, E., Hogan, A., Mileo, A.: Using Linked Data to Mine RDF from
Wikipedia’s Tables. In: Proceedings of WSDM. pp. 533–542 (2014)

19. Neumaier, S., Umbrich, J., Parreira, J.X., Polleres, A.: Multi-level Semantic La-
belling of Numerical Values. In: Proceedings of ISWC. pp. 428–445 (2016)

20. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (2016)

21. Pearl, J.: Probabilistic reasoning in intelligent systems - networks of plausible in-
ference. Morgan Kaufmann Publishers Inc. (1989)

22. Pham, M., Alse, S., Knoblock, C.A., Szekely, P.: Semantic Labeling : A Domain-
independent Approach. Proceedings of ISWC pp. 446–462 (2016)

23. Ran, C., Shen, W., Wang, J., Zhu, X.: Domain-Specific Knowledge Base Enrich-
ment Using Wikipedia Tables. In: Proceedings of ICDM. pp. 349–358 (2015)

24. Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent. In: Advances in Neural Information Processing
Systems. pp. 693–701 (2011)

25. Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation Extraction with Matrix
Factorization and Universal Schemas. In: Proceedings of HLT-NAACL (2013)

26. Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to DBpedia. In: Pro-
ceedings of WIMS. p. 10 (2015)

27. Ritze, D., Lehmberg, O., Oulabi, Y., Bizer, C.: Profiling the Potential of Web
Tables for Augmenting Cross-domain Knowledge Bases. In: Proceedings of WWW.
pp. 251–261 (2016)

28. Sekhavat, Y.A., Paolo, F.D., Barbosa, D., Merialdo, P.: Knowledge Base Augmen-
tation using Tabular Data. In: Proceedings of LDOW at WWW (2014)

29. Sun, H., Ma, H., He, X., Yih, W.T., Su, Y., Yan, X.: Table Cell Search for Question
Answering. In: Proceedings of WWW. pp. 771–782 (2016)

30. Venetis, P., Halevy, A., Madhavan, J., Paca, M., Shen, W., Wu, F., Miao, G., Wu,
C.: Recovering Semantics of Tables on the Web. PVLDB 4, 528–538 (2011)

31. Wang, J., Shao, B., Wang, H.: Understanding Tables on the Web. In: ER. vol. 1,
pp. 141–155 (2010)

32. Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: InfoGather: Entity Aug-
mentation and Attribute Discovery by Holistic Matching with Web Tables. In:
Proceedings of SIGMOD. pp. 97–108 (2012)

33. Zhang, Z.: Effective and efficient semantic table interpretation using tableminer+.
Semantic Web 8(6), 921–957 (2017)


	Extracting Novel Facts from Tables for Knowledge Graph Completion(Extended version)

