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CHAPTER 1

Introduction

Never before have people had access to as much information as they do now. In its

30-year history, the web has brought about a revolution in the way that data are

published and consumed. One might expect that anyone could now effortlessly use

any publicly available dataset for new applications and analyses. However, this is

not the case. The enormous volume of available data has been accompanied by an

immense variety of data representation. If we want to realize the huge potential of

data on the web for innovation, we therefore must understand, and be able to process,

the diverse forms in which people structure this data [Berman et al., 2018].

In this thesis, we will focus on tables, which people have used for representing

structured data since the dawn of writing (Figure 1.1). Organizing information in

a table helps people to understand its meaning visually, and also makes it easier to

perform mental operations on it [Hurst, 2000]. For instance, we can compare different

cells in one column, or look up specific values quickly using labels in the topmost

row. In this way, tables are an efficient way to encode human knowledge for effective

processing and communication. They occur widely in (non-fiction) text, and have

been common in digital documents and web pages for decades [Lopresti and Nagy,

1999].
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Figure 1.1: Clay tablet; Pre-Sargonic (c. 2500 bc). Sumerian account of silver and
other commodities; square tablet, 8 columns. (British Museum, CC BY-NC-SA 4.0)

In the past decade, there has been much research into using tables from the web

for various applications [Cafarella et al., 2018]. They have been used to support such

diverse tasks as fact lookup for question answering systems [Yin et al., 2011], extending

user-provided tables [Yakout and Ganjam, 2012], and providing structured answers to

web search queries [Chirigati and Liu, 2016] or complex natural language questions

[Pasupat and Liang, 2015].

However, one of the main problems when automatically processing tables is that

you always need some background knowledge to understand the structure of data on

its own. This becomes an important issue when sharing data outside of a single frame

of reference, or combining data from multiple sources. Humans have an enormous

capacity for interpreting ambiguous structures in context, but computers need explicit

definitions. For example, take the bottom table of Figure 1.2: some people might

recognize a table like this from baseball scoreboards, inferring that the cells ‘Brooklyn’

and ‘New York’ in the leftmost column refer to baseball teams instead of places, and

understand that the nine numbered columns refer to the number of runs scored per

inning. People without this background knowledge would be just as clueless as the

computer, and unable to make such inferences.

12



Chapter 1. Introduction

Team 1 2 3 4 5 6 7 8 9 R H E

Brooklyn 1 0 0 0 0 0 0 3 0 4 8 0

New York 0 0 0 0 0 0 1 0 4 5 8 0

Figure 1.2: A table used on a baseball scoreboard, and a similar web table from an
article on Wikipedia. (Wikipedia user web, CC BY-SA 3.0)

The explicit definitions that are used by computers for structuring data are known

as data models. The field of data modeling aims to discover, define and analyze

how people can effectively represent information in software systems [West, 2011].

These days, data modeling is an essential part of the software development process

[Kleppmann, 2017]. Organizations that use multiple data models for different software

systems, or that want to incorporate external data modeled by third parties, will find

themselves needing to reconcile these models in order to combine data in a coherent

way. This problem is known as data integration [Doan et al., 2012].

Recent developments in large-scale data analysis and machine learning have opened

up new, valuable prospects for extracting insights and creating applications that make

use of large amounts of data. In 2005, enterprise data integration had already been

estimated to yield about half a billion dollars in revenue [Halevy et al., 2005], and the

market value had grown to $6.44 billion by 2017 [Marketsandmarkets.com, 2017]. It is

one of the building blocks for building succesful data warehouses and data lakes [Doan

et al., 2012], and an essential part of billion-dollar cloud platforms these days such

as Amazon Web Services 1, Microsoft Azure 2 and Snowflake 3. But despite the high

1https://docs.aws.amazon.com/glue/
2https://azure.microsoft.com/en-us/services/data-factory/
3https://www.snowflake.com/guides/data-integration/
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1.1. Integrating Tables with Knowledge Bases

Name Founder Year

Vrije Universiteit Abraham Kuijper 1880

Mathematisch Centrum David van Dantzig 1946

location

capital
nationality

founded

AmsterdamCWI

David_van_Dantzig Netherlands 
EntityClass

founded
Organization 

Relation

Figure 1.3: A table that expresses information about people who founded organizations
(left), and a fragment of a Knowledge Base (right) that is extended with a new fact.

investments, these solutions often do not scale to the enormous variety of data models

used in practice, nor are they able to deal with the inconsistencies and conflicts that

arise when preparing data for modern applications [Stonebraker and Ilyas, 2018].

Moreover, these systems are designed for integrating data from multiple software

applications, but not for processing tables that were created for human eyes. Fur-

thermore, they are built on the assumption of a closed domain, where one knows

beforehand which topics and types of information should be in the data model. Because

of the scale and diversity of tables on the web, these systems are therefore unsuited

for our goal of automatically processing arbitrary tables. Instead, to succeed at this

task we need a large amount of flexibly modeled, open-domain background knowledge,

and effective techniques that leverage this background knowledge for table integration

in open-domain settings.

1.1 Integrating Tables with Knowledge Bases

Since the explosive growth of available data on the web, the potential of large-scale

data integration has been widely acknowledged [Yoshida et al., 2001]. Whereas the

original aim of the web was to make sharing information easier for people, its inventor

later started an initiative to make information on the web more accessible to machines:

Berners-Lee et al. [2001] coined the term “Semantic Web” for a project that aimed to

enrich data with explicit references to well-defined standards, thereby making the web

machine-readable.

There has been a trend in recent years to leverage this set of standards to create

14



Chapter 1. Introduction

large databases of general knowledge called Knowledge Bases (KBs). These KBs

usually define a set of entities (such as CWI), entity classes (such as City) and relations

between entities (such as location). The most popular way to express facts in KBs is

as triples (such as 〈CWI, location, Amsterdam〉). Due to its simplicity, this framework

is extremely flexible and thus useful for many scenarios. Such triples can also be

seen as describing labeled edges between entity nodes in a graph, so KBs are also

commonly known as Knowledge Graphs (KGs). Examples of publicly available KBs

include DBpedia [Auer et al., 2007] and Wikidata [Vrandečić and Krötzsch, 2014],

which are used in many applications such as information retrieval [Seyler et al., 2018],

data integration [Kharlamov et al., 2016] and question answering [Diefenbach et al.,

2017]. KBs are also used in industrial applications by most major web companies

[Noy et al., 2019].

The task of interpreting web tables by associating them with concepts from a

KB has received much attention from the research community (e.g. [Limaye et al.,

2010, Ritze et al., 2015]). This task is typically broken down into three sub-tasks (as

shown in Figure 1.3) that associate various components of the table with concepts

in the KB, predicting: (1) classes for columns, (2) relations between columns, and

(3) entities for cells. After this interpretation step, the information expressed in the

table can be transformed using the predicted associations to create new triples for

the KB. In this way, the table is not only interpreted using the KB as background

knowledge, but it is also used to extend the KB with new information [Oulabi and

Bizer, 2019]. The potential of extending KBs using web tables has recently emerged

as part of a larger trend of semi-automatically constructing KBs from large amounts

of data [Suchanek and Weikum, 2013, Zhang et al., 2019]. However, the diversity of

real web tables means that neither open-domain table interpretation, nor the design

of effective pipelines for extending KBs using web tables is a solved problem.

Therefore, in the next section we will discuss the consequences of table diversity

and its effect on extracting and integrating knowledge from tables. This will lead to

the four research questions stated in the next section, which we aim to address in this

thesis, all based on one fundamental problem:
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1.2. Research Questions and Contributions

How do we automatically integrate a diverse set of tables into a coherent,

machine-readable format?

1.2 Research Questions and Contributions

The fundamental research problem stated above is very broad, so in this section we

will break it down into the four research questions that form the scope of this thesis.

We will also give a short description of our contributions with regard to addressing

them. Overall, in this thesis we will work to answer the main research problem

by investigating which real-world phenomena impede the integration of tables with

Knowledge Bases, and develop methods for overcoming these challenges.

1.2.1 Extracting New Facts

There is a trade-off that arises when developing a system that uses a KB for interpreting

tables with the goal of extending that same KB. The predicted interpretations of such

a system are often largely based on finding matches between information in the table

and facts in the KB [Limaye et al., 2010, Ritze et al., 2015]. Consequently, the system

is able to make more confident predictions if a larger part of the table can be matched.

However, this matched information is redundant for the goal of extending the KB

because it is already known, while the part of the table that can not be matched is

most interesting for this goal, as it expresses novel information that is not yet in the

KB. Thus, the more the interpretation depends on matches, the more confident its

predictions will be, but the less useful it is for KB extension. Existing work has rarely

focused on this trade-off. We therefore need to address the following question:

Research Question 1: How do we measure and account for the trade-off

between accuracy and coverage improvement in table interpretation?

Our contribution towards addressing this problem is twofold. First, we make an

empirical contribution by replicating the evaluation of two state-of-the-art techniques

16



Chapter 1. Introduction

for table interpretation and analyze the amount of novel extractions using two new

metrics. We observe that current techniques are biased towards confidence, but this

comes at the expense of novelty. Then, we introduce a new algorithm for novelty-

oriented table interpretation based on a scalable graphical model using context-

dependent entity similarities. Our algorithm further disambiguates cell values using

KB embeddings as additional ranking method. Our experiments show that our

approach has a higher recall during the interpretation process than the state-of-the-art

systems, and that it is more resistant against the bias towards redundancy observed

in other systems, because it produces more novel extractions.

1.2.2 Integrating N-ary Tables

Many existing table interpretation methods make simplifying assumptions about the

structure of web tables that often do not hold in practice. First, some systems assume

that every table has a single key column that contains the name of that table’s main

entities, and all other columns express attributes of those entities. However, in many

cases web tables express relations between any pair of columns [Braunschweig et al.,

2015b]. Second, most systems assume that the table expresses binary relations, which

involve two entities, while it has been shown that most tables on the web express

so-called n-ary relations that concern more than two values [Lehmberg and Bizer,

2019]. Third, a common assumption is that tables can be separated into a header,

which may contain class or relation labels, and a body, which contains entity names

and values. Instead, many web tables actually include entity names and values in

their header for editorial layout reasons, especially in the case of tables that express

n-ary relations. These phenomena all contribute to the the problem that real-world

web tables are more diverse than previously assumed. This motivates us to formulate

the following question:

Research Question 2: How can we extract n-ary facts from diverse

real-world web tables and integrate them with a KB?

We make an empirical contribution towards solving these issues by designing and
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1.2. Research Questions and Contributions

evaluating a pipeline for large-scale table-to-KB data integration, which consists of

several stages. First, our method applies heuristic transformations that reshape tables

with the goal of reducing the diversity of their layouts. Next, it clusters similar tables

into fewer unified ones to overcome the diversity of their content. Then, the unified

tables are linked to the KB so that knowledge about well-described entities propagates

to the lesser-known ones. Finally, our method applies a technique to judiciously

interpret the table and extract n-ary relations that relies on functional dependencies.

Our experiments over 1.5M Wikipedia tables show that our clustering can group

together semantically similar tables, which leads to the extraction of many novel n-ary

facts.

1.2.3 Creating a New KB from Tables

Although many KBs aim to cover a wide range of topics, it would be unrealistic to

expect them to cover all possible domains of interest. In some cases, we would like to

be able to use tables to create a new, domain-specific KB from scratch.

The techniques we developed for addressing the previous research questions relied

on a large KB for interpreting tables, but in this scenario there is no data at all that

we can use for the first step of finding matches. This can be seen as an extreme case of

the novelty trade-off from our first research question. In this situation, human effort

is needed to create the initial data for training a model that can be used to find and

integrate new information. However, labeling individual data points is cumbersome

and often prohibitively expensive. Therefore, we are interested in answering the

following question:

Research Question 3: How can we build a coherent KB from tables on

a new domain, with minimal human effort?

Our contribution to answering this question is the design and evaluation of a

system called Tab2Know, which we developed for the domain of tables in scientific

papers. It addresses the challenge of automatically interpreting the tables in these

papers, and of disambiguating the entities that they contain. To solve these problems,
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Chapter 1. Introduction

we propose a pipeline that employs both statistical-based classifiers and logic-based

reasoning. First, our pipeline applies weakly supervised classifiers to recognize the

type of tables and columns, with the help of a data labeling system and an ontology

specifically designed for our purpose. Then, logic-based reasoning is used to link

equivalent entities in different tables. An empirical evaluation of our approach using a

corpus of papers in the Artificial Intelligence domain suggests that ours is a promising

step to create a large-scale KB of scientific knowledge.

1.2.4 Designing Pipelines

As we have seen above, new and interesting research challenges arise when applying

table integration techniques to real-world data. To account for various phenomena

related to table diversity, it is necessary to understand how issues related to the

structure, quality and domain of this data influence the integration results. However,

current approaches for table integration typically focus on only part of the pipeline,

and are hard to debug at the system level.

To facilitate research into real-world table integration, we believe it is therefore

essential to move beyond solving table integration subtasks in isolation on simplified

benchmarks. By looking at the performance of table integration systems in practice,

we can discover new avenues for research and make practical impact. This motivates

us to formulate the following research question:

Research Question 4: How can we support research into table extraction

and integration pipelines on realistic data?

Our contribution towards progress on this challenge is a resource, in the form of a

modular library called Takco. While it is tempting to look for a one-fits-all solution,

we believe that the most impact can be made by firmly embedding such a library in

an existing data science ecosystem. That way researchers and practitioners have the

flexibility to adapt and re-configure existing solutions to their needs, and evaluate

them on new domains. The design of Takco therefore allows for the loose coupling

of various stages in table integration pipelines, and enables users to analyze and
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tune these stages for their use-case. We have evaluated Takco on various real-world

datasets and found it to return satisfactory performance, while highlighting interesting

properties of real-world data that open up new research directions.

1.3 Thesis Outline and Publications

This thesis consists of seven chapters that are mostly based on papers that have been

previously published. In this section, we will describe the structure of subsequent

chapters and which publications they are based on.

• In Chapter 2. Background, we provide an overview of background material

necessary to understand this thesis. We discuss some existing work on table

interpretation, and its connection to the fields of data management and data

integration. We also define some formal aspects of Knowledge Bases and ways

to model different types of information in them, as well as techniques that have

been developed to construct them (semi-)automatically. Additionally, we discuss

several applications of this research and its real-world impact.

• In Chapter 3. Extracting Novel Facts from Tables, we address the first

research question on measuring and overcoming the novelty trade-off in the table

interpretation task.

The research in this chapter is based on the following published papers:

– Benno Kruit, Peter Boncz and Jacopo Urbani. Extracting new knowledge

from web tables: Novelty or confidence? Proceedings of KBCOM Workshop

at WSDM, 2018.

– Benno Kruit, Peter Boncz and Jacopo Urbani. Extracting novel facts from

tables for Knowledge Graph completion. Proceedings of ISWC, 2019.

• In Chapter 4. Extracting N-ary Facts from Table Clusters, we focus on

the second research question about the n-ary structure of real-world web tables

and their effective integration with KBs.
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The research in this chapter is based on the following published paper:

– Benno Kruit, Peter Boncz and Jacopo Urbani. Extracting N-ary Facts

from Wikipedia Table Clusters. Proceedings of CIKM, 2020.

• In Chapter 5. Building a KB from Tables in Scientific Papers, we deal

with the third research question on bootstrapping domain-specific KBs from

web tables with minimal human effort.

The research in this chapter is based on the following published paper:

– Benno Kruit, Hongyu He and Jacopo Urbani. Tab2Know: Building a

Knowledge Base from Tables in Scientific Papers. Proceedings of ISWC,

2020.

• In Chapter 6. A Platform for Web Table Information Extraction, we

address the last research question, on supporting data scientists in creating

scalable table integration pipelines on real-world data.

The research in this chapter is based on the following published work:

– Benno Kruit, Peter Boncz and Jacopo Urbani. Takco: A Platform for

Extracting Novel Facts from Tables. Proceedings of WWW, Demonstrations,

2021.

• In Chapter 7. Conclusion, we present general conclusions and insights that

we developed with regard to work on these problems, as well as future directions

for research.
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CHAPTER 2

Background and Related Work

Because our goal is to integrate new information from real-world tables into KBs,

we must first describe existing techniques for processing these types of data. In this

chapter, we will discuss existing work on processing web tables, as well as provide

background information to help understand the work presented in this thesis. This

will provide the context for subsequent chapters, in particular how the techniques

presented therein are related to recent developments in the field.

In Section 2.1 we will introduce some fundamental concepts and terms about data

modeling and web tables that we will use in subsequent sections, as well as briefly

discuss research on acquiring and pre-processing tables from diverse sources, which will

give us an idea of the kind of input data that we will be dealing with. In Section 2.2

we give a short description of Knowledge Bases, how they encode different kinds of

information, how to combine them, and also give a brief overview of existing work

on creating or expanding them automatically, which is the aim of the work in this

thesis. In Section 2.3, we will introduce the problem of table interpretation, which will

motivate much of the work in this thesis, and discuss existing research that addresses

it. In Section 2.4 we will briefly discuss some challenges in the field of Data Integration
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and a selection of related work that addresses them, which provides the background

for our schema matching and entity linking in Chapters 4 and 5. In Section 2.5 we

will discuss the real-world impact and varied applications of web tables, illustrating

the relevance of further research in this field.

2.1 Tabular Data

In this section, we will introduce some background concepts related to processing tab-

ular data from different perspectives. It consists of four parts. In Section 2.1.1, we will

briefly introduce the fields of data modeling and data integration, and in Section 2.1.2

we will discuss how data is typically presented in tables on the web. Section 2.1.3

concerns the challenges related to detecting and extracting these tables from web

pages, and Section 2.1.4 will give an overview of related work on understanding their

layout and structure.

In general, it may help to informally visualize many of these approaches as lying

on a spectrum with varying data heterogeneity. In Figure 2.1, we have adapted the

spectrum described by [Ives et al., 2015], and show several aspects of the approaches

that we discuss in this chapter.

Due to the large amount of research on the subject of web table processing, we will

limit ourselves to topics that are most relevant to later chapters; for a comprehensive

survey on web table extraction, retrieval and augmentation, see [Zhang and Balog,

2020].

2.1.1 Data Modeling

Systems for processing large amounts of data are pervasive in the modern world. For

these systems to be effective tools, their data must be organized such that it is suitable

for human understanding (the conceptual data model), and also for efficient processing

(the physical data model) [West, 2011]. In the following section, we briefly introduce

some fundamental concepts in data modeling, which will help us connect our research

problems to existing approaches in the field of data integration later on. Readers
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• Structured sources


• Closed domain


• Manual curation effort


• Enterprise solutions

Enterprise  
Data Integration

• Noisy HTML extractions


• Open domain


• Machine Learning


• Search applications

Web Table 
Search Systems

• Diversely structured tables


• Multi-domain ontology


• KB matching


• Pipeline design

Web Table

KB Extension

Figure 2.1: A spectrum between Enterprise Data Integration and Web Table Search
systems (adapted from [Ives et al., 2015]).

who are familiar with databases may feel free to skip this section, and continue with

Section 2.1.2 on web tables.

The Relational Model The most popular approach for managing databases in

software applications is known as the relational model [Codd, 1970]. Its purpose is

to provide a declarative method for specifying data and queries. In this model, users

describe the content of a database and what they want from it in a language consistent

with first-order predicate logic, and the database management software takes care of

the low-level procedures of storing and retrieving the data. Conceptually, the data is

organized into relations , which are collections of identically structured chunks known

as tuples . The structure of each tuple in a relation is known as its schema, made up

of a number of attributes constrained by domains . For example, these domains may

be textual character strings of certain lengths or numbers below a certain size, and

are used both for speeding up database operations and enforcing logical structure on

the data.

Adapting the definition of [Abiteboul et al., 2015], we formally state that

a relation r = {t1, . . . , tn} is a set of n tuples which are all elements of

a schema r ⊆ S, where S is a Cartesian product of m domains S =

D1 × · · · × Dm and each domain D ⊆ dom is a subset of all allowed
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values dom. Each of the m domains corresponds to an attribute of S. In

database theory literature, the attributes within each schema are typically

given unique names U ∈ attm, where att is the set of possible attribute

names.

The easiest way to visualize a relation is as a table, with tuples as rows and

attributes as columns. This has led to people often referring to relations in this model

as “database tables”. However, for the sake of clarity, in this thesis we will make use of

the term tables to refer only to tables in (web) documents, and use the term database

relations for the structures found in relational database systems. In related work on

data processing, the term relational data is also used to refer to data that is structured

like database relations.

Unfortunately, the usage of the term attribute in the literature on web tables

and information extraction is very ambiguous. Due to the analogy between relations

and tables, the term is often used interchangeably to refer to the database concept

and to table columns. This can lead to further confusion when discussing attribute

names : for the relational definition above, attribute names simply refer extensionally

to some content of the database, while in literature on tables they are often assumed

to intensionally describe some real-world concept. Therefore, in this thesis we will

use the term attribute to refer to a conceptual characteristic of an entity, while using

database attribute to refer to the definition above, and using column to refer to table

columns as they appear in (web) documents. We will refer to a natural-language

string that describes some attribute (e.g. “birth place”) as an attribute string , which

is typically accompanied by a value string (e.g. “Amsterdam”).

In Section 2.1.2 we will use these distinctions to highlight some key characteristics

of web tables, and why systems for processing them face challenges that are very

different from those of traditional data management systems.

Data Integration Because every computer application has its own unique set of

constraints and priorities, the way that data ends up being organized in different

systems can vary widely. However, there are many cases where it is necessary to
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combine data from different sources that do not have the same structure. The data

models of those sources must then be reconciled, which is known as data integration.

There has been decades of research in the database community to develop techniques

for addressing these problems, so we will only briefly and informally sketch the main

topics here in order to provide the background for related work that we discuss later

on (for an in-depth coverage of the field, see the textbook of Doan et al. [2012]).

Research on data integration has found many applications in enterprise data

management software. In such software a distinction is typically made between

physical and virtual data integration [Doan et al., 2012, Ch. 3], concerning how and

when the data is stored and accessed. In both approaches, the schema of one data

source is defined in terms of the other schema, which specifies how to structurally

transform data from one model to the other. In physical data integration, information

is copied from the sources into a target database at regular intervals. Typically, this

is done in a three-phase process known as Extract-Transform-Load (ETL), in which

separate modules are designed for each phase to connect the schema and interface of

the source to that of the target. In virtual data integration, the target is connected

to the source at the moment when information is requested by the application, and

the structural transformations of the request and the answer are performed on-the-fly

[Van Der Lans, 2012]. Recently, significant advances have been made on using these

techniques for creating virtual Knowledge Bases over relational databases [Sequeda

and Miranker, 2013, Calvanese et al., 2017].

However, in enterprise scenarios data integration typically takes place under the

assumption of a closed domain, where the data models of the sources are known upfront,

and the transformations are defined by subject matter experts. In situations where less

is known about the source data, such as when such knowledge is poorly documented

or consists of large volumes of diverse datasets, manually creating these definitions is

infeasible, and so these approaches fail to address modern data integration challenges

[Stonebraker and Ilyas, 2018]. Thus, the problem of specifying and implementing such

transformations is orthogonal to the problem of supporting their (semi-)automatic

construction, which is the main research problem of this thesis.
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Moreover, we will see in the next section that web tables display an even wider

variety of structures than data sources in modern data integration scenarios, and

processing this variety at scale requires techniques that lie outside the field of traditional

data integration.

2.1.2 Web Tables

In this section, we will discuss tables on the web, and techniques for extracting them

and processing their structure. This will give us a general idea of the input data with

which we will be working in subsequent chapters.

First, it might be wise to attempt to define what we mean by “tables” on the web

and in documents. Although tables are omnipresent in all kinds of communication,

they can be notoriously tricky to define in general. [Hurst, 2000] attempted to

comprehensively settle the matter with regards to their occurrence in documents,

stating that, at the very least, “[a] table is an area of a document which is characterized

physically by a grid-like appearance”. However, more practically, we would like to

consider them in terms of the information that they express, so it might be more

useful to follow the statement of Braunschweig [2015] that “[tables] provide a compact

representation of similarly structured data.”

In most of this thesis, we will assume that this structure is laid out on a row-wise

basis, which means we will primarily deal with horizontal tables [Yoshida et al., 2001].

For simplicity, we make use of the following informal definition:

Tables consist of a grid of cells made up of horizontal rows and vertical

columns . In some cases, but not always, several rows at the top of this grid

form the table header , and the rest form its body . Within each column,

the header cells (if present) express some information about body cells.

Each row typically expresses statements (or facts) that involve values of

its cells.

We will expand and formalize these assumptions in Chapter 4, where we discuss

the processing of web table structures in more detail.
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Compared to database relations discussed in the previous section, it is clear that

web tables provide us with fewer guarantees on their structure. Aside from this, there

are several other characteristics that we need to keep in mind:

• Size: Web tables are much smaller than most database relations; e.g. in the

WDC corpus [Lehmberg et al., 2016] they have between 3 and 5 columns, and 12

to 14 rows on average. This provides a weak signal for inferring their meaning,

as we will see in Chapter 4.

• Quality: Not only must web tables first be extracted from pages in a process

that may introduce noise (Section 2.1.3), but we must also account for the fact

that any web extraction source may contain spam, incorrect information or

inconsistencies.

• Scale: Estimates of the number of (clean) web tables range in the hundreds of

millions [Cafarella et al., 2008]. Processing these and identifying relevant tables

for some use-case requires scalable methods.

• Variety: Even when describing similar topics, web tables may use different

terms and layouts. Conversely, the same term in different tables may refer to

different concepts. This causes ambiguity, which must be resolved for integrating

them coherently.

In the following sections, we will give a brief historical overview of existing ap-

proaches that have been developed to address these challenges.

2.1.3 Web Table Extraction

The first step when attempting to process web tables is to extract them from the

web page in which they occur, so we will briefly discuss this step before describing

techniques for their further processing (see [Roldán et al., 2019] for a survey of subtasks

and approaches). In the work described in subsequent chapters, we assume that this

step is already performed, either because we apply existing methods or use a pre-

processed corpus of tables. However, the extraction step may introduce artifacts
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into the set of tables that we use as input, and so it is important to be aware of the

strengths and limitations of these methods.

Perhaps contrary to expectations, the extraction of tables from HTML has received

much attention from the research community for over a decade. The reason for this is

that although originally HTML tables were given specified semantics in the markup

language definition [Raggett, 1996] (based on previous work on military documentation

[Bingham, 1995]), their subsequent usage on web pages took on a life of its own when

web designers also started (mis-)using them for positioning arbitrary content within

page layouts. Therefore, it had become necessary to distinguish these layout tables

from content tables in applications attempting to process tabular information from

the web [Hurst, 2001, Wang and Hu, 2002]. Around the same time, Yoshida et al.

[2001] introduced a distinction between different types of table structures in terms of

the location of value strings and attribute strings in the table. These types include

including horizontal tables (i.e. those described by our informal definition) and vertical

tables for which the attribute strings form columns instead of rows.

In subsequent ground-breaking research, Cafarella et al. [2008] applied these

techniques to create a corpus of 154M “relational” web tables filtered from 14 billion

HTML tables in order to support web search for structured data. A more fine-grained

table structure taxonomy for table filtering was created by Crestan and Pantel [2011]

and used in modified forms by several works to create classifiers for filtering HTML

tables at scale [Lautert et al., 2013, Eberius et al., 2015, Lehmberg et al., 2016]. These

corpora have been used for various applications (which we describe in Section 2.5), as

well as for the creation of annotated benchmark datasets for web table integration

[Ritze et al., 2015], which we use in Chapter 3.

2.1.4 Web Table Structures

Even after accurately extracting clean tables, some of their internal structure might

remain to be analyzed before it is possible to extract coherent information from them.

For example, there might not be a clean separation between cells that express metadata

and those that express values that can be integrated, as is shown in several tables of
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(a) Cells containing long text, wrapped to next row (b) Sub-headers

(c) Hierarchical header structure

(d) Repeated header (e) Hybrid relational-matrix table

Figure 2.2: Examples of real-world web table structures found in Wikipedia articles.
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Figure 2.2. In this section, we will discuss existing approaches for dealing with these

structures that have inspired some of our work in Chapter 4.

Pivk et al. [2007] propose a “comprehensive functional table model”, called TarTar,

for transforming tables into logical form. The authors describe a recapitulation process

which identifies value strings in table headers by decomposing complex headers. In

contrast to our approach in Chapter 4, this is only performed when the headers

have a tree-like structure, and relies on external resources. TarTar is based on the

grounded cognitive table model introduced by Hurst [2000]. More recently, Nagy et al.

[2015] found some commonalities in table headers by clustering their cells. Going

much further, Halevy et al. [2016] analyzed a large corpus of web tables, discovering

structure in table header cells to break them down in terms of multiple values (e.g.

“Coffee consumption per person in Sweden, 2005”). Although it extracted many

interpretable rules describing structures for expressing n-ary information, the content

of the tables themselves was not disambiguated nor integrated with a KB. The method

by Lehmberg and Bizer [2016] classifies table columns for detecting layout and list

tables, distinguishing tables that express binary facts from those that express facts

with a higher arity using inter-table statistics. However, none of these approaches link

the n-ary facts to a KB, as we do in Chapter 4.

Spreadsheet Tables Many tables are originally created in spreadsheet software,

and then exported to documents or tabular data interchange formats. Some of these

formats are extremely simple, using Comma-Separated Values (CSV) in newline-

delimited rows of text. However, this simplicity may disregard and throw away much

of the original structure of the spreadsheet, which must then be reconstructed before

it is suitable for further processing. This is often done manually, a task known as

data wrangling [Kandel et al., 2011]. Automatic approaches may attempt to extract

so-called logical data frames directly from spreadsheets [Chen and Cafarella, 2013,

Eberius et al., 2013] or more generally from messy grids in textual files [Christodoulakis

et al., 2020].

Recently, much work on table extraction from spreadsheets has concerned predicting

32



Chapter 2. Background and Related Work

the role of cells within the table, i.e. whether they are part of a hierarchical index

or table header, or express values or aggregations. Promising approaches include the

use of a wide range of layout and visual markup features in machine learning models

[Koci et al., 2016], using pre-trained table cell embeddings from large table corpora

[Ghasemi-Gol et al., 2019]. Similar techniques involving deep neural networks have

also been applied to predicting the roles of table structures in financial documents for

auditing purposes [Li et al., 2020]. However, these techniques are generally limited

to a pre-defined domain of spreadsheet tables, and typically require much manual

annotation to train. Nonetheless, comparable techniques may be used on web tables

with similar structures in the future, and they have inspired some heuristics for table

transformations that we describe in Chapter 4.

2.2 Knowledge Bases

In this section, we will look at how knowledge is structured and represented on the Web,

and provide an overview of the research on automatically acquiring such knowledge

from unstructured web data. It is composed of four parts. In Section 2.2.1, we will

introduce Knowledge Bases, and in Section 2.2.2, we will describe approaches for

modeling n-ary relations in KBs. In Section 2.2.3, we will give a brief overview of the

field of Ontology Matching, which has developed techniques for integrating KBs, and in

Section 2.2.4, we will present a short historical overview of techniques for constructing

KBs (semi-)automatically. This will provide the background for describing existing

work on extending KBs with information from web tables, which we do in Section 2.3.

2.2.1 Overview of Knowledge Bases

Currently, the largest repositories of knowledge on the web are in the form of Knowledge

Bases (KBs). We will briefly give a formal definition of KBs, before giving an overview

of their history, relevant applications, and challenges concerning their usage and

maintenance.
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location
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Figure 2.3: An example knowledge base fragment. Entities are represented as nodes,
and triples are represented as edges that are labeled with properties. Here, statements
about classes and properties (such as the subclass relation shown in green) are
considered part of the ontology.

In the following, we will assume that a KB K is a repository that contains

factual statements about a set of entities E , literals L (which may denote

non-entity values of different datatypes) and properties P . It can be seen

as a directed labeled graph where the nodes are entities and the edges

represent semantic relations, and can therefore encoded with triples of the

form 〈s, p, o〉 ∈ K where s ∈ E , o ∈ E ∪ L and p ∈ P .

Realistic KBs contain facts of various types: For instance, they indicate type

memberships (e.g., 〈Netherlands, type, Country〉), encode more generic binary

relations (e.g., 〈Amsterdam, capitalOf, Netherlands〉, or numeric attributes, e.g.,

〈Amsterdam, hasPopulation, 872680〉. Additionally, triples may encode complex rules

about entities, classes and properties, such as taxonomies and constraints, which

together form a so-called ontology [McGuinness et al., 2004]. Figure 2.3 shows a

fragment of an example KB, represented as a graph.

In this thesis, given the triple 〈s, p, o〉, we say that the pair 〈p, o〉 is an

property-value pair of s. Similarly, we may refer to a set of values with a

function V over entities and properties. For example, an entity e is often

associated to a finite set of labels V (e, label), which are the values for

the label property where V (e, label) = {l | 〈e, label, l〉 ∈ K} .

All of this information is typically encoded using the Resource Description Frame-

work (RDF) [Hayes, 2004], which is a W3C standard which ensures that each entity

and property of interest has a Uniform Resource Identifier (URI), such as a web
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address, and which provides several ways of encoding data structures and types. In

most RDF database management systems (also known as triple stores), such data

can be queried using the SPARQL Protocol and RDF Query Language [W3C, 2013].

Data represented using RDF is also known as Linked Data if its identifiers reference

other datasets [Bizer et al., 2011], and is said to be part of the Semantic Web when

incorporated in the metadata of web pages [Berners-Lee et al., 2001].

Examples of popular KBs include Wikidata [Vrandečić and Krötzsch, 2014], which is

created collaboratively as a public wiki project similar to Wikipedia with a combination

of manual edits and semi-automatic data imports. It is intended to support various

projects by the Wikimedia Foundation such as populating pages of low-resource

language Wikipedia editions. Another primarily manually built KB, important for

historical reasons, is Freebase [Bollacker et al., 2008], which was acquired by Google

and now lives on as part of their proprietary KB. Another popular KB is DBpedia [Auer

et al., 2007]), which is semi-automatically constructed by transforming Wikipedia

structures such as infoboxes , which express human-readable attribute-value pairs about

the article’s subject entity, using manually created templates. Lastly, the various

incarnations of the YAGO project (such as [Pellissier Tanon et al., 2020]) constitute

a tremendous effort towards automatically creating a rich, open-domain KB from

unstructured and semi-structured sources.

Many industry, business, government and non-government organizations use KBs

for a wide range of tasks [Hogan et al., 2020, Noy et al., 2019], and their flexibility

makes them useful in many different data management paradigms. They have been

used for such diverse applications as Information Retrieval [Seyler et al., 2018], Data

Integration [Kharlamov et al., 2016], Question Answering [Diefenbach et al., 2017],

Semantic Search [Dietz et al., 2018], Data Mining and Knowledge Discovery [Ristoski

and Paulheim, 2016].

Graph-structured KBs are also increasingly known as Knowledge Graphs (KG)

in the literature, especially when they are stored and accessed in software systems

that support powerful graph analysis operations. However, not all their representative

power is always needed: for instance, Cafarella et al. [2018] state that “[. . . ] in
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Figure 2.4: Representing n-ary facts in a KB with qualifiers (green dotted arrows),
using reification (dotted node).

practice, knowledge ‘graphs’ act more like ‘collections of relational tables with informal

schema enforcement’: entities tend to exhibit a small number of fixed attributes, and

computing graph-style measures is a rare use case.” We will use both “KB” and “KG”

interchangeably in this thesis, but we will opt more often for the former because of the

challenges involved with of formally representing n-ary relations as graph structures,

which we will discuss in the next section.

2.2.2 Representing N-ary Information

Almost all major Knowledge Bases are concerned mainly with binary relationships

between entities, but it is often necessary to move beyond this focus to express

useful knowledge [Suchanek, 2020]. For example, we may want to indicate at which

points in time some information was true, or under which circumstances a statement

holds. Additionally, for many purposes it is useful to keep track of the provenance

of statements: how they became part of a KB, or according to which source some

statement is true. In general, we are interested in the ways that KBs represent

information about the scope of factual statements. First, we will informally define

what we mean by n-ary facts:

A n-ary fact is a factual statement with n arguments, where n is also

known as statement’s arity . Whereas a binary fact (i.e., 2-ary fact) can

be naturally expressed with a triple, facts where n > 2 require multiple

triples to represent.

Many different approaches exist for modeling n-ary facts in KBs. For example,

Wikidata makes use of qualifiers to express such complex factual statements. A
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qualifier is a subordinate property-value pair assigned to a statement that annotates

the fact with additional information [Vrandečić and Krötzsch, 2014]. For instance, the

fact 〈Amsterdam, hasPopulation, 872680〉 is annotated in Wikidata with the qualifier

〈atTime, 2020〉. Other qualifier properties may for instance concern measures of

confidence, the mode or subtype of a relation, the role of either entity in the statement,

the method of measurement, or the degree to which a statement is disputed. Figure 2.4

shows an example of an n-ary fact represented with qualifiers.

More generally, n-ary statements in KBs are often modeled with reification [Noy

et al., 2006], of which we will use the following approach:

To model n-ary statements, every fact 〈s, p, o〉 is mapped to a fresh entity

qs,p,o ∈ E and every qualifier 〈p′, o′〉 of this fact is mapped to a triple

〈qs,p,o, p′, o′〉. In RDF, the fresh entity often takes the form of a blank

node, which is an entity that does not have a global URI but gets a local,

application-specific representation when processed. For convenience, we

will consider them entities like any other, denoted as the set B ⊂ E .

Other KBs make use of different strategies. In Freebase, n-ary relations are modeled

with “Compound Value Types” (CVT). For every n-ary relation, it introduces a separate

class for scoping factual statements. For example, the CVT music.group_membership

is associated with music.group_membership.from as a temporal property. The CVTs

were created with the explicit goal of adding scopes, resulting in Freebase having a high

coverage of n-ary data. Next to being integrated with Google’s proprietary KG, much

of this data has been imported into Wikidata [Pellissier Tanon et al., 2016]. In YAGO2

[Hoffart et al., 2013] (and subsequent versions) the temporal and geographical scopes of

factual statements are modeled explicitly, as well as detailed provenance information.

Over the years, the project has pioneered the process of automatically acquiring

and reasoning over scoped factual information, recently integrating its ontology with

Wikidata [Pellissier Tanon et al., 2020]. In contrast, DBpedia does not deal with n-ary

information explicitly, as its goal is to provide up-to-date linked datasets that connect

information from Wikipedia to other sources. However, it does feature some classes
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in its ontology that may be considered a form of reification, such as CareerStation,

which captures the temporal scope of employment.

[Hernández et al., 2015] explore the different n-ary data modeling scenarios for

Wikidata with respect to storage space, query complexity and processing time in five

popular triple stores. A different paradigm for representing n-ary information that

does not decompose them into triples works with property graphs , in which nodes and

edges are annotated with property-value pairs. Although they are similar conceptually

to other representations, property graph databases typically have specialized query

languages and make other trade-offs in their physical data layout [Francis et al., 2018].

Recently, the RDF∗ model has been proposed to extend the semantics of RDF for

modeling n-ary data [Hartig, 2017]. While this is a promising research direction, it is

still in the process of being incorporated into mainstream KBs.

2.2.3 Ontology Matching

Similarly to integrating data from relational databases, KBs have their own data inte-

gration challenges. However, the flexibility of data representation in KBs distinguishes

those challenges from those in the relational world, and has motivated much research.

This forms the field of ontology matching , which “aims at finding correspondences

between semantically related entities of different ontologies.” [Euzenat et al., 2007].

The ontology matching “life cycle”, with user interaction, reasoning and maintenance,

resembles that of its relational counterpart, but characterized by attention to standards

such as RDF, meticulous benchmarking, and powerful, theory-grounded formalisms.

In particular, the field has a tradition of yearly benchmarking tracks at the ISWC

conference, the Ontology Alignment Evaluation Initiative [Abd Nikooie Pour et al.,

2020].

Seminal work in the field includes COMA [Do and Rahm, 2002], which uses a

combination of matching approaches, and introduced a comprehensive library of

matching functions. Since then, the state-of-the-art has advanced in several directions

[Shvaiko and Euzenat, 2013], partly through large benchmark datasets from the

biomedical domain [Jiménez-Ruiz et al., 2013], but much work has been done in a
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Figure 2.5: Open Information Extraction typically makes use of a complex Natu-
ral Language Processing pipeline to weakly supervise the training of a lightweight
extraction model, which is then used to create a database of text-based facts.

manner isolated from other fields such as the database community [Euzenat et al.,

2007]. However, in its own domain progress continues to be made on challenges such as

user validation [Dragisic et al., 2016] and learning matches with the use of embeddings

[Zhang et al., 2014, Kolyvakis et al., 2018].

2.2.4 Knowledge Acquisition

Automated Knowledge Base construction from unstructured sources has been a long-

standing challenge in AI research (for a comprehensive survey, see [Weikum et al.,

2020]; for a survey on Information Extraction in a Semantic Web setting see [Martinez-

Rodriguez et al., 2020]). The field has a long history in Natural Language Processing

and Information Retrieval, but in the past decade or so has acquired its own identity

by exploring new forms of supervision for training machine-learned extraction models.

In this section, we present a brief summary of the history of knowledge acquisition for

building a KB from text sources and semi-structured data, and discuss open challenges

that are relevant to the work presented in this thesis.

The first techniques for extracting structured knowledge from text made use of

a fixed vocabulary of properties, aimed at finding specific types of information in

large document sets. Later, techniques were developed that scaled to large web

datasets without being limited to a pre-defined set of properties, which became

known collectively as Open Information Extraction (OpenIE), illustrated in Figure 2.5.
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Among them, TextRunner [Banko et al., 2007] was the first to introduce a method

that, in contrast to work that had come before, did not require specific annotated data

for extracting facts for populating a coherent database. It exploited the structure of

language through the use of a pre-trained dependency parser to create training data

from a sample of web pages. Wu and Weld [2007] then introduced KYLIN, which

uses the structured (but noisy) data in Wikipedia Infoboxes to train Conditional

Random Fields (CRFs) for extracting facts from Wikipedia text. They expanded

this work to create WOE [Wu and Weld, 2010], but “abstracts these examples to

relation-independent training data to learn an unlexicalized extractor, akin to that of

TextRunner”, At this stage several open challenges remained unresolved, in particular

(1) efficient recognition of patterns, (2) disambiguation of concepts, (3) ensuring their

consistency, and (4) extracting higher-arity and temporal facts [Weikum and Theobald,

2010].

With regard to challenge (1) and (3), much progress was made in the next decade.

The Never-Ending Language Learner NELL [Carlson et al., 2010] bootstrapped cate-

gory classifiers in a semi-supervised way by combining a hand-crafted taxonomy of

entities and properties with large-scale extraction from the web. Prospera [Nakashole

et al., 2011] scaled up knowledge harvesting by combining pattern-based gathering of

relational fact candidates with weighted consistency reasoning. Google’s Knowledge

Vault [Dong et al., 2014a] was the first system in this space to combine extractions from

different modalities (text, tables, and web page metadata) and score those extractions

using embeddings to ensure their quality, while its Biperpedia project [Gupta et al.,

2014] resulted in a very large, approximate ontology by using information from its

search query stream as a supervision signal. In the LODIE system [Gentile et al., 2015],

a novel type of supervision was generated by matching attribute-value string pairs on

a page to dictionaries of attribute-value string pairs which were pre-assembled from

across many RDF datasets. Further, Lockard et al. [2019] created a clean supervision

signal from HTML page structures using label propagation that exploited visual

features. Such HTML structures are related to the tabular structures that we reshape

in Chapter 4.
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Regarding challenge (2), Zhang et al. [2019] integrated OpenIE extractions with

KBs by using co-occurrence based embeddings of both KB properties and OpenIE

relations. Notably, they do not train entity embeddings, which means they could

deal with unseen entities. Because many quality problems are caused by such unseen

entities, Peng et al. [2019] performed distant-supervised relation extraction from

Wikipedia infoboxes, using type-aware entity linking that takes unlinkable entities

into account. The problem of unlinkable entities is closely related to that of extracting

novel information, which we address in Chapter 3.

Finally, challenge (4) about higher-arity fact extraction has of yet seen limited

attention. One exception is HighLife [Ernst et al., 2018], which infers textual patterns

for n-ary fact extraction from grammatical parse trees and combines them while cal-

culating their salience. Then, it matches these to new data while ensuring consistency

with rules and constraint reasoning, combining partial matches in a unification step.

Another exception is EventKG [Gottschalk and Demidova, 2018], an event-centric KB

extracted from several large- scale entity-centric knowledge graphs. However, much

work remains to be done on this front, to which we have hoped to contribute with the

work described in Chapter 4.

2.3 Table Interpretation

Because of the pervasive presence of tables on the web and their usefulness for

representing structured information, the question of how to automatically integrate

their content with existing structured data has received much attention from the

research community. In particular, the challenge of table interpretation, i.e. mapping

them to KBs, has been long-standing, but has nonetheless seen increased work in

recent years. However, to understand and critically assess this work, it is important

to make explicit the various assumptions on which it is founded.

In this section, we will first attempt to describe what these assumptions mean for

research in this space, and then discuss this research in terms of the main focus areas.

It is composed of three parts. In Section 2.3.1, we consider some common assumptions
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Chart (1971) Rank

Canada Top Singles (RPM)[134] 15

Netherlands (Dutch Top 40)[135] 67

Netherlands (Single Top 100)[136] 82

Figure 2.6: A web table about music chart ranks that violates many commonly held
assumptions: (1) the rows do not describe attributes of entities, (2) its context is
essential for integrating these facts (in this case, the song in question), (3) the header
structure contains a value that is part of the n-ary facts, (4) it contains compound
cells, and (5) it does not express facts that can be matched to existing knowledge in
the KB.

about tables that underpin existing table interpretation techniques, which we briefly

discuss in Section 2.3.2. In Section 2.3.3, we then examine a number of systems for

table interpretation under specific constraints.

2.3.1 Common Assumptions

Below, we list several distinctions related to the semantic interpretation of tables,

that have been highlighted by previous research, which contribute to commonly held

assumptions in the field. An example of a table that violates many of these assumptions

is shown in Figure 2.6.

1. Entity-Attribute Tables. Most work on table interpretation assumes that tables

have a entity-attribute (EA) structure, in which there is a single column that

contains the labels of some subject entities and the other columns all express at-

tributes of those entities. Every row of such tables thus neatly describes a single

entity, and every non-subject cell potentially allows for the extraction of one KB

triple. A minority of research instead considers multi-concept tables, attempt-

ing to discover multiple subject columns and their complex interdependencies

[Braunschweig et al., 2015b, Wang and Ren, 2018].

2. Self-Contained Tables. Another commonly held assumption is that web tables

are interpretable on their own, that is, they express coherent and accurate
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information when analyzed without taking their context into account. However,

tables that violate this assumption have been shown to be very common on the

web [Lehmberg and Bizer, 2016], and essential temporal metadata has also been

shown to often occur on web pages outside of web tables [Oulabi and Bizer,

2017].

3. Relational Mappings. Next, the assumption that web tables are structured

like database relations influences the way that KB mappings can be expressed.

However, in practice the structure of the table may be non-relational, for example

containing footnotes, sub-headers, sub-totals, or header cells that contain value

strings instead of attribute strings. Research that assumes the tables to have

relational structure typically map pairs of columns (of which one is the subject

column for EA tables) to KB properties. Alternatively, Vu et al. [2019] describe

D-repr, a language for specifying the semantics of tables with complex structures,

which allows for the scalable integration of diversely structured data sources

with large number of records.

4. Atomic Cells. With regard to the content of table cells, most table interpretation

approaches assume that each cell contains one value. However, related work

that we mentioned in Section 2.4 makes a distinction between compound cells,

which contain multiple values , and atomic cells, which contain only one. More

generally, the problem of breaking up compound cells into constituents is related

to web list parsing [Elmeleegy et al., 2011, Shen et al., 2012, Gupta and Sarawagi,

2009, Chu et al., 2015]. However, as far as we have been able determine, no

research has been done on interpreting tables with complex cells.

5. Isolated Matching. Finally, most approaches interpret tables on their own,

while a minority leverage patterns that can be extracted by analyzing a set of

tables collectively. In the first scenario, the interpretation of a table is only based

on surface correspondences between its contents and the interpretation model,

but in the second case it may be possible to create table unions or propagate

predicted labels between mappings. This is closely related to work on table
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clustering and similarity search (Section 2.4.1).

Unless otherwise stated, the research below assumes that the input tables are

entity-attribute, self-contained, relational, atomic-valued, and isolated.

2.3.2 Approaches and Systems

As described in Chapter 1, the problem of Table Interpretation can be decomposed

into three sub-tasks: Entity Linking, Column Typing and Property Matching (see

Figure 1.3 in the previous chapter). First, we will describe methods that perform these

tasks in isolation, and then describe research into performing them jointly. Afterwards,

we will discuss approaches that have been developed for table interpretation with

unusual assumptions.

Only Entity Linking First, we will discuss approaches that are limited to linking

entities in web tables to KBs. An early approach by Yosef et al. [2011] was primarily

oriented towards entity linking in text, but also reported reasonable results on web

tables. Bhagavatula et al. [2015] introduced a Probabilistic Graphical Model with prior

cell-entity link probabilities based on web hyperlink anchor statistics, disambiguated

through inference on a similarity graph based on semantic relatedness with context

co-occurrence features. Efthymiou et al. [2017] presented an approach to entity linking

that relies on a task-specific index, which consists of labels, descriptions and property-

value pairs from multiple KBs; its disambiguation step makes use of word vectors and

Personalized PageRank-based inference on a similarity graph.

Only Column Typing Other work limits itself to the task of column typing. One

straightforward approach is to exploit an index of entity labels without disambiguating

them [Zwicklbauer et al., 2013]. However, recently more advanced approaches have

been developed for this task which leverage carefully supervised deep neural networks

in ensemble with such candidate indexes in order to generalize across domains, such

as ColNet [Chen et al., 2019]. Similarly, Hulsebos et al. [2019] described Sherlock,

which leverages a rich feature set that includes statistics, character distributions,
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induced regular expression patterns, and word and paragraph embeddings and was

trained on a diverse dataset from four sources. This was later extended to create

Sato [Zhang et al., 2020], which takes the context of a data column into account.

However, recently Khurana and Galhotra [2020] showed that competitive performance

can also be achieved without deep learning, instead combining a heterogeneous set of

indexes while accounting for mixed-type columns.

Only Property Matching A large separate family of table interpretation systems

limit themselves to property matching. The simplest approaches perform string

similarities between the column headers and attribute strings or cell values and entity

labels [Polfliet and Ichise, 2010, Efthymiou et al., 2016]. The long-running Karma

project [Gupta et al., 2012, Taheriyan et al., 2016] considered the entire life-cycle of

semi-automatically creating and maintaining complex mappings, also for multi-concept

tables. When no overlap between the table and KB can be assumed at all, it uses

supervised models based on features of the column header and cell values [Pham

et al., 2016]. Other approaches focus on matching tables to relations from Open

Information Extraction [Venetis et al., 2011, Wang et al., 2012] or exploit occurrences

of cell value pairs in a corpus of text [Sekhavat et al., 2014, Cannaviccio et al., 2018b],

and others perform supervised learning using the KB as training data [Ermilov and

Ngomo, 2016]. In a different supervised paradigm, Taheriyan et al. [2016] perform full

source modeling, making use of a domain ontology and a set of known models, which

allows for user-driven source discovery and service composition.

Combined Matching The first system for interpreting web tables was introduced

by Limaye et al. [2010], who also formalized the problem into the three sub-tasks

described above. This approach consists of a probabilistic graphical model that

makes supervised predictions based on a large number of features. Subsequent work

approached the sub-tasks as a pipeline, using a task-specific KB [Venetis et al., 2011,

Syed et al., 2010, Wang et al., 2012], while others sped up predictions by limiting the

feature set [Mulwad et al., 2013] or using distributed processing [Hassanzadeh et al.,
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2015].

Two non-proprietary systems that perform all three sub-tasks jointly have been

evaluated on realistic datasets, T2KMatch and TableMiner+. Therefore, these are

the systems that we examine in Chapter 3. The T2KMatch system [Ritze et al.,

2015] implements a series of matching steps that match table rows to entities, using

similarities between entity property values and the table columns. Beginning with

entity candidate selection from cell values, the value-based similarities between cells

and entity properties are then used to filter the candidate set and property predictions,

after which they are recomputed on the new selection. This is iteratively repeated until

the similarities stop changing and, if it exceeds a confidence threshold, a final prediction

is chosen. The TableMiner+ system [Zhang, 2017] consists of two phases that are

alternated until a certain confidence level has been reached. The forward-learning

phase builds up predictions on a row-by-row basis, after which the backward-update

phase uses these to guide the interpretation of the rest of the data. This process is

repeated until convergence. Recently, Wang et al. [2021] propose a Deep Learning

approach to predict both column types and properties that makes extensive use of

intra-table signals and contextual information through an attention mechanism in a

multi-task learning objective, which outperforms previous approaches on a large set of

tables from the music and Wikipedia domains.

2.3.3 Constrained Table Interpretation

In this section, we briefly discuss systems that associate components of web tables to

KBs with additional knowledge or under specific constraints. Such situations may call

for radically different approaches by significantly affecting the ambiguity of cell values

or enabling the usage of different feature classes.

Closed Domains The systems evaluated in this section are primarily designed for

open-domain table interpretation. In closed-domain settings, assumptions can reduce

the redundancy of extractions. For example, the work of [Ran et al., 2015] models

the incompleteness in the domain subset of the KB by estimating class probabilities
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based on relations between entities, which the limited domain makes tractable. The

systems of [Wang et al., 2012] and [Venetis et al., 2011] use a probabilistic KB created

from a web corpus for supporting table search. This type of KB offers many strategies

for improving the recall of new knowledge because it allows for an explicit model of

low-confidence facts.

Web Resources Several models use large web text corpora in addition to the

information from the KB. TabEL [Bhagavatula et al., 2015] uses the anchor text of

hyperlinks on the web to create a prior for instance matching that takes the popularity

of entities into account. Additionally, it exploits co-occurrences of anchor links to

entity candidates on Wikipedia pages for predicting a coherent set of entities. The

work of [Sekhavat et al., 2014] creates a set of syntactic patterns from the ClueWeb09

text corpus featuring entities from properties in the KB. Given query pairs of entities

from tables, the syntactic patterns from text featuring the query pair are matched

to the patterns in the set. A probabilistic model then allows for the prediction of

properties from the KB. A similar approach is taken by [Cannaviccio et al., 2018b],

who use a language model instead of extracted syntactic patterns. This approach

queries a search engine with the entity pair, and classify the text that occurs between

the entity mentions.

Numeric Matching A separate direction is the matching of numeric columns,

either with metrics for numeric distribution similarity [Neumaier et al., 2016] or

sophisticated ontologies of quantities and statistical models [Ibrahim et al., 2016].

Recent work has tackled this problem using a task-specific quantity KB [Nguyen and

Takeda, 2018] and focusing on associations between quantity names and units [Yi

et al., 2018].

Collective Matching Using a large collection of tables, some approaches bootstrap

using high-confidence or annotated tables to tables that do not match the KB as well.

The work of [Ritze and Bizer, 2017] collect statistics from confident predictions on

tables with matching entities on which column headers occur for which KB properties.
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These statistics are useful for matching properties to columns when the instance

matching fails. Another way of using information from a large corpus of tables is by

stitching tables together to form higher-quality expanded tables, as in [Lehmberg and

Bizer, 2017] which uses both header and row content, along with information in the

table context, for construction union tables. Similarly, the work of [Cannaviccio et al.,

2018a] exploits high-confidence column-property matches from wikipedia tables with

many hyperlinks to match tables with identical headers. They then extract a large

number of confidence-weighted facts for KB expansion. These approaches are highly

relevant to our work in Chapter 4, where we expand upon this work by focusing on

matching n-ary relations.

2.4 Data Integration at Scale

As we discussed in Section 2.1.1, the scale and heterogeneity of modern data integration

scenarios have motivated research into new approaches. In this section, we will discuss

some techniques that have been developed for these use-cases that have influenced our

work in Chapters 4 and 5. Following [Doan et al., 2012, Ch. 5], we make a distinction

between instance matching , which is concerned with finding matches between individual

tuples in the databases and schema matching , which finds matches between their

schemas. Therefore, this section is composed of two parts. In Section 2.4.1, we will

discuss techniques for scalable schema matching, and in Section 2.4.2 we will discuss

techniques for scalable instance matching and entity linking.

2.4.1 Schema Matching and Profiling

Because web tables typically have only few rows and columns, they provide a relatively

weak signal for further data processing tasks such as integration. Therefore, much

research has been done on taking advantage of regularities in a large corpus of web

tables, calculating similarities between pairs of tables, or creating web table clusters.

In this section we will highlight a selection of techniques from the literature. These

techniques are related to traditional schema matching approaches (for an overview of
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these, see [Rahm and Bernstein, 2001]), but must additionally account for the diversity

of web table data.

For example, one difference between traditional data integration approaches and

methods developed for web table integration is the incorporation of the table context.

Ling et al. [2013] introduced a method for creating union tables which made use of the

table context for constructing “hidden” attribute-value string pairs. These were then

aligned and added to the union tables as extra columns, resulting in large, coherent

tables. In Chapter 4, we make use of the same idea for integrating the table context

and stitching multiple tables, while expanding it by reshaping and aligning table

structures in order to boost KB integration performance.

Similarity Estimation When automating schema matching on a large scale, it

becomes prohibitively expensive to perform many types of similarity calculations

between each pair of tables under analysis. For example, given a collection of ten

million web tables which contain 100 cells on average, calculating some similarity score

between all tokenized cell pairs would naively result in 1018 function calls, which, if a

billion of them were performed per second, would take over 300 years.

Instead, there are different kinds of data representations that allow for quick

approximate similarity calculation, known as nearest neighbor search, which produce

an estimate of the most similar instances for any query instance. One powerful example

is locality-sensitive hashing (LSH) [Gionis et al., 1999], which uses hashing to create

small bit-vectors that represent the sets and efficient indexes for fast retrieval. Even

if the estimates are not perfect, with proper configuration it still brings down the

number of pairs that need to be compared to a manageable number. This is known as

blocking (Figure 2.7). An extension of LSH is LSH Ensemble [Zhu et al., 2016], which

uses multiple indexes for approximating set containment, which is useful for finding

overlapping domains in data sources.

Another technique that is increasingly popular in this space is creating embeddings :

real-valued dense vectors of objects generated through optimization. These objects may

be words, cells, or even columns and tables. Their representations reflect factorized co-
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Figure 2.7: In the task of schema matching, we aim to find matches between table
columns, but comparing all pairs of columns is expensive. Blocking efficiently finds a
subset of column pairs that is designed to overlap the set of true matching pairs as
much as possible (adapted from [Papadakis et al., 2020a].

occurrences within the data, and can be used for various data integration tasks [Deng

et al., 2019, Gentile et al., 2017]. Scaling up, Dong et al. [2020] explore partitioning

strategies on an embedding-based similarity index in the case that the data lake is

large and the index cannot fit in main memory. In the recent work of Fetahu et al.

[2019], pairs of Wikipedia tables with equivalent or subsumed domains are discovered

efficiently in a three-step process. First, they use a blocking approach to find relevant

article pairs based on a set of relatedness scores. Then, candidate table pairs are found

using a Random Forest classifies trained with a rich set of contextual table features.

Finally, these pairs are then analyzed using a neural network classifier which predicts

how their domains are related, which identifies many related table pairs. However,

none of these techniques have use these schema matches for integration with KBs, for

which a semantic interpretation step is needed.

Compound Value Processing In contrast to the well-defined relational attribute

domains described above, web tables also often contain compound columns, in which

cells contain multiple values arranged in some pattern (for instance, names and birth
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dates). Various approaches have been developed for processing such patterns, of which

we mention a small selection here. Chaudhuri et al. [2006] describe SSJoin, a system

for suggesting similarity joins based on prefix filtering of extracted q-grams. Similarly,

Zhu et al. [2017] infer syntactic transformations for complex cells that allow for efficient

table join suggestions. Finally, Jin et al. [2020] exploit multilingual Wikipedia tables

about the same topics to infer patterns for column datatypes, which can be used for

automated data cleaning. Techniques such as these are essential for extracting clean

data values, but none of the discussed work has integrated these with KBs, which

remains an open problem.

Data Profiling Many techniques for discovering regularities in relational datasets

are part of the process of data profiling [Naumann, 2014]. This includes functional

dependency (FD) discovery [Papenbrock et al., 2015], which aims to find constraints

between database attributes where the values of one set of attributes (the key) uniquely

identifies the value of others. However, in noisy datasets it is useful to be less strict:

Wang et al. [2009] use probabilistic FDs for detecting low-quality data sources and

normalizing schemas. Other data profiling tasks include finding inclusion dependencies ,

which express subset constraints, and unique column combinations [Roick et al., 2016].

In general, data profiling can be useful for data cleaning [Batini et al., 2009], decrypting

the schema of ETL pipelines [Albrecht and Naumann, 2012], and analyzing knowledge

graphs [Jentzsch et al., 2015]. We will adapt some of these techniques for finding n-ary

KB matches in Chapter 4, where we provide a formal description and algorithm for

our use of data profiling in this subtask.

2.4.2 Instance Matching and Entity Linking

Because so many database tuples and column rows describe entities and their attributes,

the existing approaches for instance matching and entity linking are closely related. The

problem of matching records in databases is very old [Fellegi and Sunter, 1969] and has

still received considerable attention in database research in recent years (96+ papers in

VLDB, KDD, etc. in 2009-2014). When concerning multiple structured datasets it is
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often known as record linkage [Christen, 2012] or instance matching [Doan et al., 2012],

and it is known as entity matching [Böhm et al., 2012], or entity resolution [Papadakis

et al., 2020b]) when the items of interest are assumed to represent entities. The

related task of associating text or semi-structured data to entities in a KB is typically

known as entity linking (which is the term we will use throughout this thesis) or entity

disambiguation [Shen et al., 2015]. The literature on this subject is vast, and thus

we only give a very brief sketch of recent methods that are relevant to our own work

(for recent surveys on the topic, see [Christophides et al., 2020] and [Papadakis et al.,

2020c]).

Some works have focused on entity linking using knowledge bases (e.g., Linda [Böhm

et al., 2012]). Another line of work has focused on crowdsourcing, e.g., Das et al. [2017]

and citations therein. Other, recent research has explored the usage of embeddings for

this task: For instance, Cappuzzo et al. [2020] have shown how to construct embeddings

from tabular data, training from random walks on a tripartite cell occurrence graph

(connecting rows, cells, and columns). Finally, Zhu et al. [2020] designed a scalable

Graph Neural Network (GNN) encoder and aggregation method for entity matching

between KBs that is makes use of node features to generalize to new nodes by encoding

the node neighborhood, handles multiple entity types in one model. One of the most

prominent developments in entity linking is Magellan [Konda et al., 2016], which is a

tool to help users to perform entity matching, providing different implementations of

matching and blocking algorithms. Additionally, Mudgal et al. [2018] have recently

studied the application of deep learning for entity matching, but concluded that it

does not outperform existing methods on structured data with few property-value

pairs per entity, such as our scenario in Chapter 5.

2.5 Impact and Applications

In this section, we discuss the ways that open-domain table processing is used in

practice. It is composed of two parts. In Section 2.5.1, we will describe systems that

support searching for tables, returning parts of tables from queries, or suggesting
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specific ways to integrate them. In Section 2.5.2, we will discuss systems that support

explorative, user-driven data integration of heterogeneous datasets.

2.5.1 Search, Query Answering and Integration

Much research has been done on supporting user queries over large collections of web

tables. In contrast to the work described in this thesis, the approaches below focus on

search and do not integrate the tables with a KB.

Cafarella et al. [2008] described the initial results of the WebTables project at

Google, in which they construct a join graph for supporting table-building user queries.

They make use of an Attribute Correlation Statistics Database (ACSDb), which

disambiguates column headers to some extent. This long-running project led to much

work that was integrated into public-facing applications such as data search and

spreadsheet tools [Cafarella et al., 2018]. Similarly, Wang et al. [2012] described a

system for bootstrapped taxonomy population from web tables, and its application

in semantic table search at Microsoft. Related techniques have been integrated into

the its Bing search engine as a fact lookup module for question answering [Yin et al.,

2011], extracting entities from text context using wrapper induction.

The seminal work of Das Sarma et al. [2012] presented an approach to find related

tables based on their schema and contents. This results in table pair candidates for

joins or unions, but does not have a way to canonicalize entities or detect duplicates.

Similar to the Octopus system described above, Bhagavatula et al. [2013] described

a relevant-join prediction approach for Wikipedia tables which allows users to find

join candidates for query tables. Pimplikar and Sarawagi [2012] introduced Wwt, a

table search engine that returns schema-mapped tables given a query that consists

of keywords describing attributes. Similarly, the Infogather system [Yakout and

Ganjam, 2012] supports several user query types, and explicitly assumes that tables

are entity-attribute tables with a subject column.

Other tasks that have been supported using large collections of web tables are: find-

ing synonyms for attribute strings [He et al., 2016], recommending relevant attribute-

value string pairs given entity queries [Kopliku et al., 2011], predicting header cells
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for headerless query tables [Braunschweig et al., 2015a, Hancock et al., 2019], and

extending tables by using hyperlinks in large web table corpora [Lin et al., 2010].

Apart from tables that appear within the text of web pages, there has been

much research into increasing the accessibility of tabular datasets that are published

explicitly for re-use. These so-called “Open Data” tables, often distributed in the form

of separate files such as spreadsheets, are often difficult to automatically process due

to the fact that they deal with specialized topics and narrow domains. Though some

progress has been made to (semi-)automatically interpret these datasets (e.g. [van der

Waal et al., 2014, Neumaier and Polleres, 2018]), most approaches are still limited to

recommending possibly overlapping datasets [Nargesian et al., 2018], recommending

datasets based on their meta-data [Wang et al., 2020], and other search techniques

[Chapman et al., 2020].

2.5.2 Dataspaces

Although fundamental research into these techniques is vital, it is decidedly non-trivial

to put them to use and integrate them into a coherent system. Franklin et al. [2005]

introduced the concept of Dataspaces , which allow for gradual, on-demand, pay-as-you-

go enhancement of schema mappings. The techniques they introduced are useful when

the data is heterogeneous yet complete, when the system is not the only application

accessing the data, and when the integration approximate and incremental. This

was expanded by [Salles et al., 2007] to make use of “trails” that users create when

accessing a data search engine, to gradually build schema mappings. The seminal work

of Cafarella and Halevy [2009] introduced Octopus, which offers several operations

useful for dataspaces with regard to search, context extraction, and table extension.

Braunschweig et al. [2012] described a related Dataspace Support Platform that

operates on Open Government Data, which allows non-expert users to explore and

integrate data in using relational database operators. Ives et al. [2015] described the

requirements and results of creating a similar system in practice for the neuroscience

domain. Other examples are Data Civilizer [Deng et al., 2017], which uses effective data

discovery techniques for polystore systems, where data may reside in heterogeneous
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relational databases, and Aurum [Castro Fernandez et al., 2018], which combines

efficient techniques to build, maintain and query an Enterprise Knowledge Graph,

including a profiler that finds approximate dataset matches, and a resource-efficient

sampling signature method for keeping track of source data changes. Finally, Galhotra

and Khurana [2020] demonstrated S3D, a system for searching tables similar to

Octopus, but with added semantic operations and integration of results from KBs.

2.6 Summary

In this chapter, we discussed various existing work on processing web tables, and

provided some background information to help understand the work presented in this

thesis. First, we described the nature of web tables, and described their characteristics

in connection to the relational model, as well as challenges regarding their extraction

and structure. The result was a number of issues concerning their size, quality,

and variety, which motivate the design of our approaches in subsequent chapters.

Then, we introduced Knowledge Bases, together with some formal notation that is

most fundamental to the work in this thesis. We also discussed some popular KBs,

and provided an overview of techniques for combining them and extending them

automatically, which is the main focus of our research. We then provided an overview

of existing work on the problem of table interpretation, which we will build upon in

our novelty-oriented evaluation of existing methods and the development of our own

table interpretation approach in Chapter 3. This was followed by an brief sketch of

related work that addresses challenges on data integration at scale, which provides

the background for our schema matching and entity linking approaches in Chapters

4 and 5. Finally, we described some examples of systems that show the real-world

impact and varied applications of research on web tables, illustrating the relevance of

further work in this field.
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Extracting Novel Facts from Tables

In this chapter, we first describe our experiments on existing systems and their bias

towards extracting known facts. Then, we propose a new, novelty-oriented method for

extending a Knowledge Base (KB) from tables.

Existing techniques for table interpretation tend to focus on information that is

already in the KB, and therefore extract many redundant facts. Our new method

aims to find more novel facts. We introduce a new technique for table interpretation

based on a scalable graphical model using entity similarities. Our method further

disambiguates cell values using KB embeddings as additional ranking method. Other

distinctive features are the lack of assumptions about the underlying KB and the

enabling of a fine-grained tuning of the precision/recall trade-off of extracted facts.

Our experiments show that our approach has a higher recall during the interpretation

process than the state-of-the-art, and is more resistant against the bias observed in

extracting mostly redundant facts since it produces more novel extractions.
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3.1 Introduction

Much of the world’s information exists as tabular data. These are available as HTML

tables on web pages, as spreadsheets, or as publicly available datasets in many different

formats. There has been more than a decade of research in recognizing, cleaning

and capturing these so-called web tables [Cafarella et al., 2018]. Because of their

relational nature, such large collections of web tables are suitable for supporting table

search [Yakout and Ganjam, 2012] or for answering specific factual queries [Sun et al.,

2016]. In certain web tables, the rows describe attributes or relationships of entities.

This makes them suitable sources for extending the coverage of Knowledge Bases

(KBs), which is a task known as KB completion.

In order to perform KB completion from web tables, we must first align their

structure and content with the KB, a problem broadly referred to as table interpretation.

Table interpretation has been the subject of several prior works (see Chapter 2,

section 2.3). Similar to our research, these works primarily focus on the interpretation

of entity tables, i.e., tables where each row describes one entity and columns represent

attributes. In this case, the interpretation process consists of two operations. First,

each row is linked with an entity in the KB, and optionally the entire table is linked

to a class. Then, each column is associated to a KB property.

After the table is correctly interpreted, we can extract novel triples from the table

and add them to the KB. This last operation is also known as slot-filling, as the empty

‘slots’ in the KB are filled with new facts [Ritze et al., 2016]. Table interpretation

strongly affects the quality of slot-filling, since errors in the former can no longer

be corrected. Because of this, state-of-the-art table interpretation techniques (an

overview is given in Chapter 2, Section 2.3) aim for high precision by pruning out

many potential assignments already at early stages. While high precision is desirable

in some contexts (e.g., table search), we have observed that this strategy leads to a

high number of redundant extractions during slot-filling, since only the assignments to

entities that are well-covered in the KB are retained, which we describe in Section 3.2.

With the goal of maximizing the number of novel extractions without sacrificing
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precision, we present a new method for KB completion from web tables. In contrast

to existing approaches, our method does not prune out row-entity assignments, but

performs the interpretation by performing inference over all possible assignments

using a Probabilistic Graphical Model (PGM). The PGM uses label similarities as

priors, and then updates its likelihood scoring to maximise the coherence of entity

assignments across the rows using Loopy Belief Propagation (LBP). Coherence is not

computed using a predefined metric (such as class membership) but is automatically

selected as a combination of properties that are shared by the entities in the table.

This is a novel feature of our method which makes it capable of working with KBs

with different topologies and/or data models. Since we use both label similarities and

coherence based on salient common attributes, our method is able to maintain a high

accuracy for the row-entity assignments. At the same time, it is also able to return

many more novel extractions since we did not prune out any assignments.

We also propose an approach to perform slot-filling by disambiguating attribute

cells in a novel link-prediction framework. Our approach makes use of embeddings

of KB entities and properties to improve the quality of the disambiguation whenever

label matching is not sufficient. This furthers our aim to find novel facts for KB

completion.

We compared our method to several state-of-the-art systems. Additionally, we

evaluated the performance of these systems with regard to the redundancy of the facts

that they extract from the tables. Our experiments on popular benchmark datasets

show that our approach yields slightly lower precision, but significantly higher recall

on entity predictions. This leads to many more novel extractions than what is possible

with existing methods. Finally, to test the scalability of our method we perform a

large-scale evaluation on 786K tables from Wikipedia.

3.2 Motivation: Measuring Redundancy

We are interested in using tables to expand a knowledge base, which we represent as a

set of facts KB over a set of entities EKB. The table extraction technique is expected
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to yield a new set of facts FP over EKB. For a set of tables in an held-out set, it is

standard practice to manually annotate a gold standard set of facts FG and use them

for evaluating how many facts in FP are correct. Notice that FG might contain facts

that are either in KB or not.

So far, current techniques have been evaluated w.r.t. the set of true positives

FG ∩ FP (correctly extracted facts) and false negatives as FG \ FP (valid facts that

were missed). These measures do not capture the redundant information that was

extracted. We propose two additional metrics to capture it. The first, which we refer

to as positive redundancy (R+), is the fraction of correctly extracted facts that are

already in the knowledge base, and the second, negative redundancy (R−), is the

fraction of annotated but unextracted facts that are in the knowledge base:

R+ =
|(FG ∩ FP ) ∩KB|
|FG ∩ FP |

R− =
|(FG \ FP ) ∩KB|
|FG \ FP |

(3.1)

In other words, R+ is the redundancy of the true positives, andR− is the redundancy

of the false negatives. Notice that these measures work only if FG \ FP 6= ∅ and

FG∩FP 6= ∅ but these are conditions largely satisfied in practice. For example, imagine

a table of 3 columns and 10 rows yielding |FG| = 20 relational facts, of which 13 are

already in the KB. If the technique at hand predicts only 10 correct facts but 8 of

these are already in the KB, then |FG ∩ FP | = |FG \ FP | = 10, R+ = 0.8, and R− =

0.5. Intuitively, R+ reports the ratio of redundant information that was predicted,

while R− reports the ratio of redundant information that was not predicted. The two

measures do not complement each other because they depend on both the predictive

power of the technique and on the amount of novel information we can extract from

the table. For instance, if the table yields only novel facts, than both R+ and R− will

be zero regardless how good the extraction technique is.

Therefore, in order to have a more fine-grained view on the actual performance of

the technique, we introduce also two recall scores that are sensible to the redundancy.

The first, novel recall (Q?), is the fraction of new facts that is correctly extracted, and

the second, redundant recall (Q†), is the fraction of redundant facts that is correctly
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extracted:

Q∗ =
|FP ∩ (FG \KB)|
|FG \KB|

Q† =
|FP ∩ (FG ∩KB)|
|FG ∩KB|

(3.2)

In other words, Q∗ is the recall of novel annotations, and Q† is the recall of known

annotations. For the example above, |FG \KB| = 7, |FG ∩KB| = 13, Q∗ ≈ 0.29, and

Q† ≈ 0.62. We argue that the measures R+, R−, Q?, Q†, which we call the ReNew

measures, offer a better view of the performance than the used precision and recall

because they take into account the actual number of novel knowledge that we can

extract. Moreover, we can use them to formally state our hypotheses as follows:

R+ > R− (H1)

Q∗ < Q† (H2)

Note that we are specifically interested in quantifying the extent to which table

interpretation systems will extract redundant facts, and not in the general performance

of the systems with regard to novel extractions. If we were only interested in the

systems performance on the quality of their extracted facts, we could discard all

redundant facts, and measure precision and recall of the remaining set of novel

extractions. While these measures are useful for tuning systems for performance, in

this work we are interested in analysing the behaviour of existing systems with regard

to both novel and redundant extractions.

3.2.1 Experiments

In our experiments, we evaluate the systems T2KMatch [Ritze et al., 2015] and Table

Miner+ [Zhang, 2017], since they represent the current state-of-the-art for our task.

We use two datasets from Ritze et al. [2015], which contain HTML tables from a large,

cross-domain web scrape that are known to express relational data (i.e., not used for

HTML layout purposes). These datasets contain a realistic selection of tables from the

web, with manual annotations from DBPedia Auer et al. [2007], a popular up-to-date
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T2D-instance
Task System Precision Recall F1

Entities Pr. T2K Match 0.96 0.75 0.84
TableMiner+ 0.97 0.70 0.81

Type Pr. T2K Match 0.93 0.92 0.92
TableMiner+ 0.94 0.91 0.93

Relations Pr. T2K Match 0.83 0.60 0.70
TableMiner+ 0.75 0.40 0.51

T2D-complete
Task System Precision Recall F1

Relations Pr. T2K Match 0.74 0.33 0.46
TableMiner+ 0.65 0.21 0.32

Table 3.1: Precision, recall and their harmonic mean F1 for all datasets, tasks and
systems.

KB. Thus, they are ideal for our purpose.

We evaluate the performance of the three key operations performed during the

table interpretation process: 1) Entity prediction, which calculates the entity associated

to each cell value. This process yields facts of the type 〈entity, label, cell_value〉; 2)

Type Prediction, which is the process to associate classes to the table’s columns. This

process yields facts of the type 〈entity, type, class_name〉; 3) Property Prediction,

which is the process that determines the relationships between two different cells. This

process yields facts of the type 〈entity, property, entity〉. In order to evaluate the

performance of the system, we need manual annotations for each of these three tasks.

The first dataset, called T2D-instance gold standard, consists of 233 tables with

manual annotations of 25703 entities, 233 types and 420 properties from DBpedia.

Using these annotations we could extract 75216 facts. The second (much larger)

dataset, called T2D-complete gold standard, consists of 1748 tables. In this case, the

manual annotations were limited to types (i.e., columns) and properties (between

columns) from DBpedia. Entities (e.g. cell values) are not annotated. The lack of

entity annotations precluded the usage of this dataset of our purposes. To fix this

problem, we created a silver-standard set of entity annotations for each system by

leveraging class predictions. If a class was correctly predicted for a column, then we
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T2D-instance
Task System R+ R− Q? Q†

Entities Pr. T2K Match Match 1.00 0.71 0.00 0.77
TableMiner+ 1.00 0.74 0.00 0.73

Types Pr. T2K Match 1.00 0.71 0.00 0.77
TableMiner+ 1.00 0.74 0.00 0.73

Relations Pr. T2K Match 0.81 0.22 0.10 0.63
TableMiner+ 0.83 0.32 0.04 0.36

T2D-complete
Task System R+ R− Q? Q†

Relations Pr. T2K Match 0.82 0.15 0.12 0.78
TableMiner+ 0.83 0.29 0.07 0.47

Table 3.2: ReNew metrics: positive redundancy, negative redundancy, novel recall and
redundant recall for all datasets, tasks and systems.

assumed that the matching with the entities was correct. Using this method, we were

able to extract 56509 and 48173 facts for T2KMatch and TableMiner+, respectively.

This still allows us to extract facts and calculate the redundancy scores. However,

by definition in this case the entity and type matchings will be ideal. Therefore, we

report the results only for the properties.

Accuracy

Initially, our goal was to reproduce the experiments presented in literature and

compare the two systems using the standard precision, recall, and F1. Running the

T2KMatch system was not particularly challenging since the implementation was

already configured to use DBPedia. However, the TableMiner+ system Zhang [2017]

was originally designed for the Freebase knowledge base, and used services that have

been discontinued. To provide a meaningful comparison, we minimally altered the

system to use the same KB as the one used by the T2KMatch framework. Moreover,

we replaced the Freebase module by a label index and KB query index in Lucene,

using the same interface. In this way, we could provide a meaningful comparison of

the two systems.

The precision and recall were calculated following the definitions in Ritze et al.
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Figure 3.1: Avg. fraction of facts that is new, for facts extracted from annotations
( |FG\KB|
|FG|

) and predictions ( |FP \KB|
|FP |

).

[2015] and Zhang [2017]. Predictions of equivalent classes and properties were consid-

ered correct, and so were single-level superclasses Ritze et al. [2015].

The results we obtained are presented in Table 3.1. We can see that both systems

perform very similarly on the T2D-instance dataset, particularly regarding entity and

type prediction. The scores for T2KMatch are comparable to the scores published in

Ritze et al. [2015] which means we were able to reproduce the experimental analysis

presented in literature. With the T2D-complete dataset, T2KMatch significantly

outperforms TableMiner+ on the property prediction task. This may be due to the

coherence that T2KMatch calculates between all columns of a table and ontology

properties of a class, but a further error analysis is outside the scope of this work.

Redundancy

We report in Table 3.2 the four ReNew metrics on the set of facts from entity, types,

and property predictions for both systems. First, we observe that R+ and Q∗ is 1 and

0 for the entity and types predictions respectively. These values are expected since

by design both systems only accept mappings that are already in the KB. Thus the

positive redundancy is maximal while novel recall is minimal. Notice however that R−

and Q† do not have ideal values, which means that the systems do miss valid entity

and type predictions because of this policy.

Furthermore, we can see that both hypotheses hold in every case and with both
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systems. This means that a large part of correct extracted facts is redundant (R+ close

to 1) and that a large part of unextracted facts is novel (low R−). Moreover, the ratio

of novel facts that is extracted (Q∗) is lower than the ratio of redundant extractions

(Q†). If we compare the two systems, then we observe that negative redundancy (R−)

is higher with TableMiner+, which indicates that a larger fraction of missed facts

are known. Also, novel recall (Q∗) is lower, which means that the system retrieved a

smaller fraction of all novel facts that could have been extracted.

One could argue that since the tables do contain some redundant information,

then it should be expected that the system also returns redundant predictions. To

consider this case, Figure 3.1 reports the average fraction of facts that is not in the

KB for facts extracted from the gold standard ( |FG\KB|
|FG|

) and for predictions returned

by the two systems ( |FP \KB|
|FP |

). This figure clearly illustrates that the ratio for the two

systems is smaller than the amount of redundant information from the tables, which

confirms (from an empirical perspective) our conclusion that the state-of-the-art is

biased towards the prediction of already-known knowledge rather than novel one.

3.3 Our Approach

3.3.1 Background

In this section, we provide some background on concepts on which our approach is

based. For background on Knowledge Bases and Table Interpretation, see Chapter 2.

PGMs In this chapter, we employ Probabilistic Graphical Models (PGMs) to

perform the interpretation. PGMs are a well-known formalism for computing joint

predictions [Pearl, 1989]. For a given set of random variables, conditional dependences

between pairs of variables are expressed as edges in a graph. In these graphs, variables

are connected if the value of one influences the value of another. The connection is

directed if the influence is one-way, and undirected if both variables influence each

other. The behavior of the influence on every edge is expressed by a function known

as the potential function. When performing inference in a PGM, information from
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the nodes is propagated through the network using the potential functions in order to

determine the final distribution of the random variables.

Slot filling The survey by Ji and Grishman [2011] discusses approaches and chal-

lenges to the slot filling task in the context of textual information extraction. Most

systems use distant supervision for textual pattern learning, and some employ cross-

slot reasoning to ensure the coherence of multiple extracted values. Recently, work on

Universal Schemas by Riedel et al. [2013] has allowed the joint factorization of textual

extractions and KB properties and this boosts slot-filling precision.

Data fusion In the field of data fusion, systems explicitly aim for high recall and

use a post-processing filter to improve precision. In [Muñoz et al., 2014], the extracted

facts are filtered using machine learning models, and in [Dong et al., 2014a] they are

filtered using a sophisticated statistical model of the KB. In [Ritze et al., 2016], the

system of [Ritze et al., 2015] is used to interpret a large collection of web tables, after

which the extracted facts are filtered using several strategies. However, only 2.85% of

web tables can be matched, which is attributed to a topical mismatch between the

tables and the KB.

KB Embeddings We also make use of latent representations of the KB [Nickel et al.,

2016] to filter out incorrect extractions. In particular, we consider TransE [Bordes

et al., 2013], one of the most popular methods in this category. The main idea of

TransE is to “embed” each entity and property into a real-valued d-dimensional vector

(where d > 0 is a given hyperparameter). The set of all vectors constitutes a model Θ

of |E|d+ |P|d parameters which is trained so that the distance between the vectors of

entities which are connected in K is smaller than the distance between the ones of

entities which are not connected.

To this end, Θ is trained using stochastic gradient descent, minimizing the L1-

distance d(s + p,o) (where s, o and p are the vectors that are associated with the

entities s and o and property p for which 〈s, p, o〉 ∈ K) while maximizing an equivalent

distance for triples that do not occur in K.
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Figure 3.2: Overview of our approach.

Training Θ is done by minimizing the loss function

LΘ =
∑

〈s,p,o〉∈F

∑
〈s′,p,o′〉∈S〈s,p,o〉

[γ + d(s + p,o)− d(s′ + p,o′)]+ (3.3)

where: s, s′,o,o′,p are the vectors associated to the entities s, s′, o, o′ and type p

respectively; γ ≥ 0 is an hyperparameter that defines the minimum acceptable margin;

d(·) is a distance function (typically the L1 norm), [x]+ returns the positive part of x,

and S〈s,p,o〉 = {〈s, p, o′〉 | 〈s, p, o′〉 /∈ F} ∪ {〈s′, p, o〉 | 〈s′, p, o〉 /∈ F}, i.e., it is a set of

“corrupted” facts which are not in K. Once training is completed, the model can be

used to perform link prediction, i.e., to estimate the likelihood of unseen facts: if the

distance of these facts is small, then these are more likely to be true.

3.3.2 Intuition

Our approach applies three operations in a sequence (Figure 3.2). The first operations

pre-processes the input table to determine whether it is suitable for extracting novel

triples. The second one interprets the table, i.e., maps the rows and columns to

concepts in K. Finally, the third operation extracts (novel) facts from the table so

they can be added to K.
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Preprocessing Not all tables are suitable to extract factual information. In this

research, we are interested in tables that describe entities and their binary properties,

like the one reported in Figure 3.3. First, we identify the key-column (if any) using

the heuristics proposed by [Ritze et al., 2015] which consists of selecting the column

with most unique non-numeric values breaking ties by choosing the leftmost one. This

heuristics works well in practice for this dataset so we apply it without modifications.

Only the tables with valid key columns are considered since these are the only ones

for which we can (potentially) extract factual knowledge.

Table Interpretation We apply a novel procedure to link the rows and columns

in the table to entities and properties in K respectively. This is the most important

task in the pipeline because these links are crucial for performing slot-filling.

In line with other methods, we assume that the entities described in the rows

are similar to each other according to some unspecified criterion. It is important

that the similarity between entities is computed accurately because it is precisely this

value that later allows the system to select certain mappings instead of others. Both

T2KMatch and TableMiner+ consider two entities as similar if they are instances of

the same class. In principle this is an effective choice, but it becomes suboptimal

when the KB does not contain the relevant class or when the similarity is defined over

different attributes.

To overcome these limitations, we introduce a more general similarity function

which considers all shared attributes between two entities, and then employ a statistical

inference procedure to maximize the coherence between the assignments. We use a

PGM as statistical framework to infer likelihood scores between rows and candidate

mentions, and employ Loopy Belief Propagation (LBP) [Koller et al., 2009] as infer-

encing method to change these scores depending on how the various candidates are

similar to each other.

The scores returned by LBP indicate which are the assignments that maximize

the coherence between the entities. We combine these scores with other ones that

measure the syntactic overlap between the labels of the candidate entities (and their
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attributes) and the content of the row. The score obtained by this combination is

used to rank the candidate entities and to select the one with the highest score.

Since the scores for the entity candidates consider all shared neighbors and not

only class instantiation, our method can deal with a larger variety of tables. This

is beneficial because it leads to higher recall and thus can improve the extraction of

novel information.

Slot filling Finally, we proceed with the extraction of novel triples from the content

of attribute columns. Suppose that the previous operation has mapped the content of

row i and non-key column j to entity ei and property pj respectively. If we manage

to associate the content of the cell at coordinates (i, j) to an entity ei,j, then we can

construct the triple 〈ei, pj, ei,j〉 and add it to K. To this end, we first retrieve from K

all entities with a label that is similar to the content of the cell. In case this operation

returns multiple candidates, we make use of the context that we have already acquired

to rank them. Namely, we know already that ei,j should be linked to ei through pj.

Therefore, we rank the candidates depending on the likelihood that such link exists.

To compute the likelihood scores of potential links, we use the embeddings computed

by TransE [Bordes et al., 2013]. After the candidates are re-ranked, we select the one

with the highest likelihood score and return the extracted triple.

3.3.3 Table Interpretation

Now, we describe our method for performing table interpretation in more detail.

Figure 3.3 shows the computation that takes place during the interpretation, using

table (a) as a motivating example. In this case, the key-column is the second one

(“title”) but its content is ambiguous since the values can refer to movies, TV series,

or books. For instance, the second row can refer to the TV serial M*A*S*H or to the

movie MASH, as is shown in Figure 3.3b. The goal of this task is to map as many rows

ρ as possible to corresponding entities in E and each column c to one property in P .

To this end, we perform a sequence of five operations, described below.

69



3.3. Our Approach

Year Title Director
1931 M Fritz Lang
1970 M*A*S*H Robert Altman
1942 The Magnificent Ambersons Orson Welles
1968 The Producers Mel Brooks
1994 The Professional Luc Besson

Title

subj
ect

su
bj
ec
t

producer

director

The_Producers_(2005_film)

The_Producers_(1968_film)
Mel Brooks

American_satirical_films
M*A*S*H_(TV_series)

M*A*S*H_(TV_series)
MASH_(film)

6 12

M*A*S*H_(TV_series)
MASH_(film)

The_Producers_(2005_film)
The_Producers_(1968_film)

9

(a) Example Table of Films (b) Row Candidates (c) Attributes in the KB

(d) Loopy Belief  
Propagation

(d1) Nodes: Row- 
Candidate Scores L

(d2) Edges: Entity 
Similarities S

(e) Row-independent Candidate Scores q

M*A*S*H_(TV_series)
MASH_(film)

9

The_Producers_(2005_film)
The_Producers_(1968_film)

9(f) Posterior Candidate Scores C

MASH_(film)

Figure 3.3: Schematic representation of our table interpretation method.

Step 1: Candidate Entity Selection

First, we identify the key-column (if any) using the heuristics proposed by [Ritze et al.,

2015], which consists of selecting the column with most unique non-numeric values

breaking ties by choosing the leftmost one. This heuristics works well in practice so we

apply it without modifications. Only the tables with valid key columns are considered

since these are the only ones for which we can (potentially) extract factual knowledge.

For every cell in the key column, we then select a set of entity candidates. We

represent this computation with the function Cand(ρ) which takes in input a generic

row ρ and returns all entities in E which are potential candidates with ρ. This function

is implemented by 1) indexing all the labels in K, 2) retrieving the labels which contain

the cell value of the key column, 3) returning the entities associated to the labels.

Let e ∈ Cand(ρ) be a potential entity candidate for row ρ. We call the tuple (ρ, e) a

row-entity assignment. If Cand(ρ) is empty, then ρ is ignored. Otherwise, the table

interpretation process will determine which row-entity assignment should be selected.

Example 3.3.1. In the table (a) of figure 3.3, we assume that the second column is

the key column, because it is the leftmost column with non-numeric unique values.

The label index returns a set of scored candidate entities per row (b).
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The label matches are ranked using length-normalized smoothed TF-IDF. In our

case, the query corresponds to the cell value of the key column, while the documents

are all labels in K. Identically to [Ritze et al., 2015], we (1) take only the first result

if it is much better than the next and (2) take the top three labels otherwise. The

final set of candidates consists of all entities associated with these labels.

Typically entities are explicitly linked to labels with direct properties (e.g.,

rdfs:label [Hayes, 2004]). However, more links can be retrieved if we also consider

titles and disambiguation pages. In our approach, we add also these labels to the

index because we observed that this leads to a substantial increase of the recall. At

this stage, it is important to have a high recall because the subsequent operations

cannot recover in case we fail to retrieve the correct mapping. In the definitions below,

we denote these sets of labels for each entity as V (e, label).

Step 2: Computation of the Priors

In this step, we compute a score of the row-entity assignments by comparing all cell

values in the row with all the labels of entities that are connected to the candidate

entities. To this end, we first define attribute links, and related labels of an entity e as

Links(e) = {〈p, v〉 | 〈e, p, v〉 ∈ F} (3.4)

LinkLabels(e, p) = {l | 〈p, v〉 ∈ Links(e), l ∈ V (v, label)} (3.5)

Intuitively, Links(e) contains all links of e while LinkLabels(e, p) represents the labels

at the other end of the p-links from e. Then, we introduce the function

Match(c, ρ, e, r) = max
s∈Cell(c,ρ)

max
l∈LinkLabels(e,p)

TokenJaccard(s, l) (3.6)

to compute the highest attainable string similarity between the cell at column c and

row ρ and the values of the p-links from e. Here, Cell(i, j) returns the content of the

cell at row i and column j in a table with n rows and m columns, while TokenJaccard

is the Jaccard index J(A,B) = |A∩B|
|A∪B| of the tokens in each string. For instance, in
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the table in Figure 3.3 each cell is matched to each attribute of the corresponding

row-entity candidates, e.g., Match(3, 4, The_Producers_(1968_film), director) is

the score that quantifies to what extent the content of the cell at coordinates (3, 4)

matches the string “Mel Brooks”, which is the label of the director of the film. Note

that we treat the content of every cell as a string. There are some approaches that

use type-specific cell and column matching methods [Ritze et al., 2015, Pham et al.,

2016, Zhang, 2017, Limaye et al., 2010], but a combination of our method with these

techniques should be seen as future work. Our motivation for this is two-fold: 1) our

method is focused on slot-filling, for which numeric properties are not a part, and 2)

the datasets in our study are not sufficient for evaluating numeric property matching,

which is a domain in itself with many fine-grained distinctions (e.g. units, precision,

interpolation) [Ibrahim et al., 2016, Neumaier et al., 2016, Nguyen and Takeda, 2018].

We can now compute likelihood scores for mapping cells to entities (Eq. 3.7), and

for mapping columns to properties (Eq. 3.8) to aggregate and normalize these scores

on the row and column levels respectively:

CellScore(c, ρ, p) =
1

|Cand(ρ)|
∑

e∈Cand(ρ)

Match(c, ρ, e, p) (3.7)

ColScore(c, p) =

∑n
i=0 CellScore(c, ρi, p)∑n

i=0

∑
p′∈c CellScore(c, ρi, p′)

(3.8)

For instance, in Figure 3.3a, CellScore(4, 3, director) returns the likelihood that

the cell (4,3) matches the property director, while ColScore(3, director) returns

the aggregated scores for column 3 considering all rows in the table.

Since ColScore(c, p) is the likelihood score that column c maps to property p, we can

use this value to construct the prior distribution of all assignments to c. Furthermore,

we can use these scores to refine the likelihood of the possible row-entity matchings.

We compute such likelihood as

RowScore(ρ, e) =
1

m

m∑
i=0

max
p∈P

ColScore(ci, p)×Match(ci, ρ, e, p) (3.9)
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In essence, Eq. 3.9 computes the likelihood of an entity-row matching as the average

best product that each cell matches to a certain attribute (p, e) (Match(·)) with the

general likelihood that the column matches to p (ColScore(·)). We use the values of

RowScore to build a prior distribution for all entity-row matches.

Step 3: Entity Similarity Scores

Both prior distributions computed with Eqs. 3.7 and 3.8 rely on the Jaccard Index.

Thus, they are distributions which are ultimately built on the string similarities

between the strings in the cells and the entities’ labels. We use these scores to compute

similarity scores between pairs of candidate entities across the rows. In the next step,

we will use these similarities to compute better entity-row likelihood scores than the

ones of Eq. 3.9.

First, we weigh all links 〈p, v〉 depending on their popularities across the entities

in the table and the corresponding prior of the assignments that use them. To this

end, we define the function LinkTotal as

LinkTotal(p, v) =
n∑
i=0

max
e∈Cand(ρi)

RowScore(ρi, e)[〈p, v〉 ∈ Links(e)] (3.10)

where [x] returns 1 if x is true or 0 otherwise. Note that since RowScore returns a

value between 0 and 1, LinkTotal(·) returns n in the best case.

Then, we represent the coverage and saliency of 〈r, v〉 by normalising the value

LinkTotal(r, v) with respect to the table and the KB:

Cover(p, v) =
LinkTotal(p, v)∑n

i=1[〈p, v〉 ∈ ∪e∈Cand(ρi)Links(e)]
(3.11)

Salience(p, v) =
LinkTotal(p, v)

|{e ∈ E | 〈p, v〉 ∈ Links(e)}|
(3.12)

Intuitively, Cover(·) computes the popularity of 〈p, v〉 among the rows of the table,

while Salience(·) considers all entities in K. We combine them as

LinkScore(p, v) = Cover(p, v)× Salience(p, v) (3.13)
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so that we can rank the attributes depending both on their coverage within the table

and popularity in the KB. This combination allows us to give low ranks to attributes,

like 〈isA,Resource〉, which should not be considered despite their high coverage since

they are not informative. In contrast, it can boost up the score of attributes with a

medium coverage in case they have a high saliency.

Finally, we use the scores from Eq. 3.13 to compute a similarity score between

pairs of entities. We compute the similarity between entities e1 and e2 as

EntitySimilarity(e1, e2) =
∑

〈p,v〉∈Links(e1)∩Links(e2)

LinkScore(r, v) (3.14)

Step 4: Disambiguation

Now, we compute which are the row-entity assignments which maximise the coherence

in the table, i.e., maximise the similarity between the entities. These assignments are

determined using Loopy Belief Propagation (LBP) [Pearl, 1989].

We model each row-entity prediction as a categorical random variable, for which the

label score RowScore(ρ, e) is the prior distribution (Figure 3.3d1). For convenience, we

can view these scores as a sparse matrix L of size n× |E|. The variables are connected

to each other with the edge potentials being defined by entity-entity similarities

EntitySimilarity(e1, e2) (Figure 3.3d2; equivalently represented by a matrix S), which

forms a complete graph. Since this graph has loops it is not possible to perform exact

inference. Therefore we approximate it by executing LBP. Additionally, all our edge

potentials are identical. This causes all nodes to receive identical information from

each other. Instead of having separate messages for each node, we thus have a single

vector-valued message that provides the belief updates for our nodes:

qe =
n∏
ρ=0

∑
e′∈Cand(ρ)

Lρ,e′ × Se,e′ =
n∏
ρ=0

(LS)ρ,e (3.15)

Cρ,e = Lρ,e × qe (3.16)

where qe indicates how similar entity e is to all weighted candidates of all rows, and
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Cρ,e is the coherence score of entity e for row ρ (Figs. 3.3e and 3.3f respectively).

Because the main operation consists of a single matrix multiplication, computation is

fast and can be parallelized by standard matrix processing libraries.

LBP can be run for multiple iterations (in our case, replacing Lρ,e′ by Cρ,e′), but

is not guaranteed to converge [Pearl, 1989]. In fact, we observed that sometimes an

excessive number of iterations led to suboptimal assignments. This occurred when

the entity similarity scores (Eq. 3.14) were not accurate due to missing attributes

in the KB and ended up “overriding” the more accurate priors that were computed

considering only label similarities (Eq. 3.9) when they are combined in the following

step. From our experimental analysis, we observed that in the overwhelming majority

of the cases a single iteration of LBP was enough to converge. Therefore, we apply

Eq. 3.16 only once without further iterations.

As we can see from Eq. 3.16, the selection of the entity for row ρ relies on two

components, L and q: The first takes into account to what extent the entity label

matches the label of candidate entities and to what extent the labels of the attributes

matches with the remaining cell values. The second considers the coherence, i.e., the

mappings that maximise the similarity between the entities.

Finally, we disambiguate rows by choosing the highest-rated candidate êρ =

argmaxe Cρ,e. Then, we re-calculate ColScore(c, r) with the updated set of candidates

containing only the predicted entity Cand(ρ) = {êρ} and disambiguate columns by

choosing the highest scoring property r̂c = argmaxp ColScore(c, r). After this last step

is computed, our procedure has selected one entity per row and one property per

attribute column. In the next section, we discuss how we can extract triples from the

table.

3.3.4 Slot-Filling

After the table is interpreted, we can extract partial triples of the form 〈s, p, ?〉 where

s are the entities mapped to rows and p are the properties associated to columns. If

the cell contains numbers or other datatypes (e.g., dates) that we can add the cell

value to the KB as-is, but this is inappropriate if the content of the cell refers to an
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entity. In this case, we need to map the content of the cell to an entity in the KB.

The disambiguation of the content of a cell could be done by querying our label index

precisely the same way as done in Sec. 3.3.3. However, this extraction is suboptimal

since now we have available some context, i.e., 〈s, p, ?〉 that we can leverage to refine

our search space. To this end, we can exploit techniques for predicting the likelihood

of triples given the KB’s structure, namely KB embeddings provided by the TransE

algorithm [Bordes et al., 2013]. Given in input ei, i.e., the entity associated to row i

and pj, i.e., the property associated to column j, our goal is to extract a fact of the

form 〈ei, pj, x〉 where entity x is unknown. We proceed as follows:

1. We query the label index with the content of Cell(i, j) as done for the computation

of Cand(·) in Sec. 3.3.3. This computation returns a list of entity candidates

〈e1, . . . , en〉 ranked based on label string similarities.

2. For each candidate ek ∈ 〈e1, . . . , en〉, we compute Rank(k) = d(ei +rj , ek) where

d is the distance measure used to compute the TransE embeddings (we use the

L1 norm), and ei, rj, ek are the TransE vectors of ek, pj, ei respectively.

3. We return 〈ei, rj, ek〉 where ek is the entity with the lowest Rank(k), i.e, has the

closest distance hence it is the triple with the highest likelihood score.

3.4 Evaluation

Our implementation uses two additional systems: Trident [Urbani and Jacobs, 2020],

an in-house triple store to query the KB; and Elasticsearch1, a well-known search

system based on Lucene [Hatcher and Gospodnetic, 2004] that we used for building

and querying the label index. Moreover, we reimplemented the TransE algorithm for

creating the KB embeddings. Since our KBs contain millions of nodes and edges, we
1https://elastic.co/
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parallelized the learning using Hogwild! [Recht et al., 2011]. We empirically verified

that this form of parallelism does not affect the quality of the embeddings.

Baselines Since our goal is to extract novel facts from tables, we considered existing

systems that perform slot-filling as baselines. In particular, we considered the systems

T2KMatch [Ritze et al., 2015] and TableMiner+ [Zhang, 2017] because of their state-

of-the-art results. There are other systems that implement only parts of the pipeline

or under certain circumstances, see Chapter 2, section 2.3 for an overview. Further

note that these approaches primarily focus on table interpretation. In contrast, we

provide an end-to-end system which considers also the operation of slot-filling.

The two systems that we selected for evaluation were designed to work with different

KBs, thus no comparison between them was even made. Moreover, the systems were

evaluated against a set of manual annotations, and scored on the individual subtasks

in terms of precision and recall. Such evaluation did not consider the facts that the

system has extracted, but only the classification accuracy on the entity linking, type

prediction, and property prediction tasks.

T2KMatch was designed to work with a specific subselection of DBpedia [Auer

et al., 2007] while TableMiner+ was originally built to use the Freebase API. We have

performed some slight modifications to their source code so that we could perform

a fair comparison. For T2KMatch, we modified the system to be able to use an

augmented set of candidates so that in some experiments we could measure precisely

the performance of table interpretation. For TableMiner+, we modified the system so

that we could use different KBs without online API access.

Knowledge Bases Our method can work with any arbitrary KB. We consider

DBpedia (so that we could compare against T2KMatch) which is a popular KBs

created from Wikipedia and other sources. We use two versions of DBpedia: The first

is the triple-based version of the tabular subset used by T2KMatch. This is a subset

of DBpedia from 2014 and we consider it so that we can perform an exact comparison.

It contains 3.4M entities and 28M facts. Additionally, we also use the latest version
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of the full KB (version 2016-10). The full DBpedia contains 15M entities (including

entities without labels and redirected entities) and 110M facts. Finally, we compare

our performance using Wikidata (“truthy” RDF export, acquired on Oct 2018), which

has 106M entities and 1B facts. For evaluation, we map the gold standard to Wikidata

using owl:sameAs links from DBpedia.

Testsets To the best of our knowledge, there are two openly available datasets of

tables that have been annotated for the purpose of table interpretation. The first one is

the T2D dataset [Ritze et al., 2015], which contains a subset of the WDC Web Tables

Corpus – a set of tables extracted from the CommonCrawl web scrape2. We use the

latest available version of this dataset (v2, released 2017/02). In our experiments, we

disregarded tables without any annotation. The resulting dataset contains 238 entity

tables with 659 column annotations and 26106 row-entity annotations. Throughout,

we refer to this dataset as T2D-v2.

The second dataset is Webaroo, proposed by [Limaye et al., 2010]. Tables in this

dataset were annotated with entities and properties in YAGO. While these tables are

a less varied sample of the ones in the T2D, they allow us to study the behaviour

of the systems on a dataset with different annotations. This dataset contains 429

entity tables with 389 and 4447 column and row-entity annotations respectively. In

order to test the performance of T2KMatch with this dataset, we “ported” the YAGO

annotations to DBpedia using the Wikipedia links they refer to. Finally, we tested the

scalability of our system by running it on a large set of Wikipedia tables [Bhagavatula

et al., 2015].

In the remaining section, we first present experiments that are targeted to evaluate

the procedure for table interpretation. Then, we focus on the evaluation of the

performance and novelty of extractions. Finally, we report our experiments using our

method for processing a large number of tables for performing slot-filling.
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(b) Performance tradeoff, Webaroo

System Pr. Re. F1

T2KMatch .94 .73 .82
TableMiner+ .96 .68 .80
Ours (T2K candidates) .88 .72 .79
Ours (DBpedia subset) .90 .76 .83
Ours (Full DBpedia) .92 .86 .89
Ours (Wikidata) .87 .82 .84

(c) Row-entity evaluation, T2D-v2

System Pr. Re. F1

T2KMatch .88 .55 .67
TableMiner+ .85 .51 .63
Ours (T2K candidates) .74 .58 .65
Ours (DBpedia subset) .72 .59 .65
Ours (Full DBpedia) .88 .84 .86
Ours (Wikidata) .77 .71 .74

(d) Row-entity evaluation, Webaroo

Figure 3.4: Row-entity evaluation scores and precision-recall tradeoff for the T2D-v2
and Webaroo datasets (the isolines of constant F1 score are shown in grey). Precision,
recall, and F1 are calculated at the threshold of maximum F1.

3.4.1 Table Interpretation

We evaluate the performance of determining the correct row-entity assignments, which

are the key output for table interpretation. Figure 3.4b,d and Figure 3.4a,c report

a comparison of the performance of our method against the baselines. We measure

the precision/recall tradeoff (obtained by altering the threshold value for accepting

mappings), and precision, recall, and F1 (shown at the threshold of maximum F1) on

all predictions. The precision decreases whenever a system makes a wrong prediction

while the recall is affected when no entity is selected. Not predicting a match for a row

can have several causes: the candidate set for that row might have been empty, the

annotated entity might not have been in the KB (this occurs when we use a subset),

or when all candidates have been pruned away during the interpretation (this occurs

with the baselines).

2http://webdatacommons.org/webtables/
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System Pr. Re. F1

Only explicit labels .85 .69 .76
Explicit + disambiguations .84 .79 .81
Expl. + disamb. + redir. .92 .86 .89

Figure 3.5: Row-entity evaluation scores and precision-recall tradeoff of our approach
given different label sources, on T2D-v2.

In these experiments, we configured our system with three different settings: First,

we use the same KB and the candidates (i.e., the output of Cand(·)) used by the other

two systems. We refer to this setting as “T2K candidates”. Then, we use the KB subset

used by T2KMatch in our own label index and disambiguation (“DBpedia subset”).

Finally, we use our own candidate set generation and full KB (“Full DBpedia”). By

evaluating the performance of our method with these settings, we can compare the

performance of our approach given the limitations of the inputs that the other systems

face.

From the results reported in the figures, we can make a few considerations. First,

our method returns a comparable recall but an inferior precision than the baselines if

we use the set of candidates from T2KMatch, but is able to match its performance in

terms of F1 when using the same KB. However, the baselines are limited with respect

to KBs. In fact, T2KMatch requires that DBpedia is translated into a tabular format

while our method does not have this restriction. If our method is configured to use

the full DBpedia KB, then it returns the highest recall with only a small loss in terms

of precision. This translates in a significantly higher F1 score than the best of the

baselines. These are positive results since a high recall is important for extracting

novel facts.

While the precision of our system is low in the limited-input setting, many of the

errors that it makes are due to problems with the candidate set and the KB. Therefore,

we evaluated a scenario in which we artificially expanded the candidate set to always
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include the gold standard. This means we are artificially making use of a “perfect”

candidate index. Even with this addition, T2KMatch is unable to use these candidates

for prediction and returns the same results. In contrast, manually adding them to our

system leads to both a notably higher recall and precision.

This indicates that our method is sensitive to the candidate generation, i.e., to the

very first selection of candidates using the index label. To evaluate how our system

behaves with richer label indices, we evaluated our method on T2D-v2 with three

different label indices. The first index only uses the explicit labels of the entities. The

second one includes also the labels that we obtain from redirect pages in Wikipedia.

The third one adds also the labels we obtain from the disambiguation pages. The

results of this experiment are reported in Figure 3.5. As we can see from these results,

including more labels per entity significantly improves both the precision and recall of

our system.

Additionally, in the settings where we use the entire DBpedia KB, we are able to

predict more entities that were not in the subset that T2KMatch was restricted to.

In the case where we use Wikidata, our performance is lower due to missing entity

correspondences between the KB and the gold standard.

Webaroo dataset

To evaluate the systems in another context, we also performed an experiment on the

Webaroo dataset. From Table 3.4d and Figure 3.4b, we can see that our approach

again achieves higher recall at the expense of some precision. Interestingly, it is when

using the KB on which the dataset was annotated that our system achieves highest

performance.

3.4.2 Measuring Redundancy

Current systems (e.g., [Ritze et al., 2015, Zhang, 2017]) were evaluated against a set

of manual annotations, and scored on the individual subtasks of table interpretation.

Such evaluation did not consider the novelty of facts that the system has extracted.
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System Redundant Novel
Pr. Re. F1 Pr. Re. F1

T2KMatch .84 .82 .83 .76 .66 .71
TableMiner+ .86 .73 .79 .73 .56 .63
Ours (T2K candidates) .81 .84 .83 .61 .71 .66
Ours (DBpedia subset) .83 .90 .86 .59 .76 .66
Ours (Full DBpedia) .83 .96 .89 .70 .83 .76

(a) The scores for extracting novel and redundant triples from T2D-v2,
measured at the acceptance threshold of maximum F1.
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(b) The precision-recall tradeoff curve on T2D-v2.

Figure 3.6: The novel and redundant precision-recall tradeoff for the T2D-v2 dataset
(in gray, the isolines of constant F1 score). Unlike the experiments in the previous
figures, here the bias towards extracting known (redundant) facts is made explicit and
we focus on finding novel KB facts in web tables.

In other words, no difference was made between predictions of already known facts or

new knowledge, but this difference is important in our context. In order to fill this

gap, we need to distinguish between these cases when measuring performance.

Given in input a KB K = (E ,P ,F), an extraction technique like ours is expected

to yield a new set of predicted facts FP over E and P from an input source like web

tables. If we have gold standard table annotations, we can generate another set of

facts FG and use them for evaluating how many facts in FP are correct. Note that

both FP and FG might contain facts that are either in F or not. So far, current

techniques have been evaluated w.r.t. the set of true positives FG ∩ FP (correctly

extracted facts) and false negatives as FG \ FP (valid facts that were missed). These

measures do not take the redundancy of the extracted facts into account, while the

redundant information exceeds the novel information for benchmark datasets (see

Section 3.2).
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Ranking Dataset Prec@1 Prec@3

Only Label Index (TF-IDF score) Wikitable 0.37 0.42
T2D-v2 0.24 0.31

Labels + Embeddings (TransE) Wikitable 0.61 0.72
T2D-v2 0.62 0.74

Table 3.3: Precision of slot-filling with/out KB embeddings, calculated on redundant
extractions.

In Figure 3.6, we show the evaluation of the correctness of novel and redundant

facts separately. Crucially, our system significantly outperforms the baselines with

respect to the recall of novel facts, which is paramount to KB completion. In the

tradeoff curve for novel triples (Figure 3.6b), we also outperform the state-of-the-art

regarding precision for most threshold values.

3.4.3 Slot-filling

To test the scalability of our system, we have run it on all 1.6M tables in the Wikitable

dataset. The first step concerns detecting entity tables with key columns that contain

entity labels. This process returned 786K tables. Then, we proceeded with the retrieval

of entity candidates. About 288K tables did not contain any entity in DBpedia, thus

were discarded. The table interpretation process was launched on the remaining 498K

tables. Our approach is trivially parallelizable, and runs in 391 ms per table on

average.

From these tables, we extracted 2.818.205 unique facts for 1.880.808 unique slots

of the form 〈s, p, ?〉. Of those slots, 823.806 already contain at least one entity o in the

KB. However, we do not know whether our extractions are redundant, or t represents

a new extraction that should be added to the existing ones in the KB. To determine

the novelty, we queried the label index for every extracted fact and discovered that

in 307.729 cases the labels were matching. We can assume these extracted facts to

be redundant. From these numbers, we conclude that our extraction process has

produced about 1.6M extractions for which we have no evidence of redundancy and

thus can be considered as novel. A manual analysis over a sample confirmed this
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conclusion.

Finally, we evaluated the effectiveness of our procedure for re-ranking the ex-

tractions using the KB embeddings on the Wikitable and T2D-v2 datasets. To this

end, we compare the naïve index-based ranking obtained by simply picking the top

result returned from the label index against our strategy or re-ranking considering

the distance of the corresponding embeddings (Sec. 3.3.4). We chose to measure the

precision for the first or top-3 ranked candidates since this is a standard metric used

to evaluate the performance of link prediction [Nickel et al., 2016].

Since we need to know the correct entity, we restricted this analysis to the redundant

extractions (i.e., the ones already in the KB) and disregarded the novel ones. Table 3.3

reports the results both when we consider only the best result and the top three. We

see that that our embedding-based ranking outperforms the index-based ranking in

both cases, and predicts the correct entity at the top of the ranking in 61% of the

time, compared to 37% for the Wikitable dataset. Moreover, the relatively low results

obtained with the index-based ranking strategy indicate that labels are in general not

reliable for disambiguating attributes.

3.5 Conclusion and Discussion

In this chapter, we investigated the problem of extending KBs using the data found in

Web tables. Existing approaches have focused on overall precision and recall of facts

extracted from web tables, but it is important for the purpose of KB completion that

the extraction process returns as many (correct) novel facts as possible.

We developed and evaluated a new table interpretation method to counter this

problem. Our method uses a flexible similarity criterion for the disambiguation of

entity-row matches, and employs a PGM to compute new likelihood scores depending

on how the various candidates are similar to each other to maximize the coherence of

assignments. Because it combines the syntactic match between the tables and the KB

with the coherence of the entity predictions, it can confidently predict more candidates

for which the attributes in the table are not yet in the KB. Consequently, it extracts
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more novel facts for KB completion. For the task of slot-filling, we introduced a novel

approach for attribute disambiguation based on KB embeddings, which outperforms a

naive label-based approach.

We compared our method to two state-of-the art systems, and performed an

extensive comparative evaluation on multiple knowledge bases. Our evaluation shows

that our system achieves a higher recall during the interpretation process, which

is necessary to extract novel information. Furthermore, it is able to extract more

(correct) facts that are not yet in the KB.

Interesting directions for future work include the development of extensions for

tables where the entity is identified by multiple columns or where rows do not necessarily

describe entities. In particular, the heuristics for determining the key column of the

table (and whether such a column is present) would need to be replaced by a model

that reliably detects the type of table. Moreover, the inclusion of external sources

can be useful to extract more novel information from the table. Finally, despite the

remarkable work by different research teams to produce good benchmark datasets,

there is still the need for larger and more diverse benchmarks to further challenge the

state-of-the-art.

We conclude with a note about the possibility of using the embeddings during

the table interpretation instead of using them as as a “post-processing” tool during

slot-filling. In fact, their likelihood scores can be used to boost some candidates rather

than others. The problem is that we discovered that the average scores per properties

varies considerably due to differences and coverage of the KB (e.g., the scores for

triples with the property director are significantly different than the scores with

the property producer). These differences hint to the fact that a normalization step

would be needed to avoid that the system is biased towards a subset of properties,

which is prohibitively expensive for KBs of this size. Our usage of the embeddings

during slot-filling does not suffer of this problem since both the head entity (ei) and

property (rj) are already fixed.
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CHAPTER 4

Extracting N-ary Facts from Table Clusters

In this chapter, we describe our research on real-world tables that express n-ary facts

and how to integrate them with KBs, by focusing on tables from Wikipedia.

Tables in Wikipedia articles contain a wealth of knowledge that would be useful

for many applications if it were structured in a more coherent, queryable form. An

important problem is that many of such tables contain the same type of knowledge,

but have different layouts and/or schemata. Moreover, some tables refer to entities

that we can link to Knowledge Bases (KBs), while others do not. Finally, some tables

express entity-attribute relations, while others contain more complex n-ary relations.

We propose a novel knowledge extraction technique that tackles these problems.

Our method first transforms and clusters similar tables into fewer unified ones to

overcome the problem of table diversity. Then, the unified tables are linked to the KB

so that knowledge about popular entities propagates to the unpopular ones. Finally,

our method applies a technique that relies on functional dependencies to judiciously

interpret the table and extract n-ary facts. Our experiments over 1.5M Wikipedia

tables show that our clustering can group many semantically similar tables. This leads

to the extraction of many novel n-ary facts.
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Phase 2: Clustering

Phase 3: Table Union Integration

Artist Album Year Single Chart Position Certifications

Commodores Commodores 1977 "Brick House" US 5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ray Charles Ray Charles' Greatest Hits 1960 "Sticks and Stones" US 40

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ray Charles The Genius Hits the Road 1960 "Georgia on My Mind" US 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ringo Starr Blast From Your Past 1971 "It Don't Come Easy" UK 4 US: Gold

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Elvis Presley   1956 "Hound Dog" US 8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Phase 1: Table Reshaping and Context Enrichment

Commodores (album)

Year Single
Chart positions

US
US

R&B
US

Dance

1977 "Brick House" 5 4 34

1977 "Easy" 4 1 —

Page Name Year Single
Chart

positions

Commodores 1977 "Brick House" US 5

Commodores 1977 "Brick House" US R&B 4

Commodores 1977 "Brick House" US Dance 34

Commodores 1977 "Easy" US 4

Commodores 1977 "Easy" US R&B 1

Commodores 1977 "Easy" US Dance —

𝗌𝗆𝖺𝗋𝗍𝗎𝗇𝗉𝗂𝗏𝗈𝗍 ∘ 𝖺𝖽𝖽𝖼𝗈𝗇𝗍𝖾𝗑𝗍

Blocking: table sets of

 approximate neighbourhoods

Matching: weighted graph of 

aggregated similarity scores Union Table

Artist Album Year Single Chart Position Certifications

pFDs for detecting key columns

and distinguishing n-ary union tables

Disambiguating column pairs to KB relations

to extract binary and n-ary facts 

partOf

chartedIntime


salesCertification

Artist Album Year Single Chart Position Certifications

performer

ranking

Figure 4.1: Schematic overview of our pipeline. In Phase 1, we process the set of
all Wikipedia tables to clean up editorial structures (Section 4.3.1). In Phase 2, we
cluster them to form larger union tables (Section 4.3.2). In Phase 3, we integrate
them with Wikidata and extract binary and n-ary facts (Section 4.3.3)

4.1 Introduction

Tables in Wikipedia articles express many interesting relations that can improve tasks

like web search [Yakout and Ganjam, 2012], or entity linking [Wang et al., 2012]. Some

of the most popular Knowledge Bases were constructed from Wikipedia, in particular

considering the content of infoboxes. Non-infobox tables on Wikipedia, however, are

often used to state knowledge that is complementary to the knowledge contained in

infoboxes. This makes tables an excellent source of additional knowledge to extend

the coverage of current Wikipedia-based KBs, like Wikidata [Vrandečić and Krötzsch,

2014] or DBPedia [Auer et al., 2007].
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Wikipedia tables are created to present structured knowledge for human readers,

but not necessarily for machines. To process this knowledge automatically, the table

must first be transformed into a coherent structure that is machine-readable. One

way to reach this goal is to integrate the content of the tables into a Knowledge Base

(KB), but this is challenging due to the diversity of layouts, schemas, and symbols

that human contributors use to display knowledge in tabular format. Conceptual

relations can be expressed by many different schemas, their meaning might depend on

background knowledge that is expressed in the table context, columns may contain

multiple attributes in list form, and many cell values are homonyms or synonyms.

Secondly, many tables express knowledge about long-tail entities that are not present

in KBs. Moreover, many tables on Wikipedia express n-ary relations which are

challenging to interpret. In these cases, there is not a single key column that contains

the entities of which the other columns express attributes, which is something that

is assumed to exist by state-of-the-art table extraction systems [Ritze et al., 2015,

Zhang, 2017].

While there are existing works that addresses these problems in isolation (we cover

these in Chapter 2), in this chapter we propose a novel method that solves them

conjointly. Our method consists of a sequence of three main operations. First, it

efficiently combines a diverse set of table corpus statistics to perform holistic schema

normalization on tables that have different layouts. Then, the tables are clustered

together in fewer larger tables. Finally, our method extracts both entity-attribute and

n-ary facts from the clustered tables so that new facts can be added to the KB.

The novelty of our approach hinges on three components:

First, we present several techniques to normalize tables which would otherwise

be ignored by current knowledge extraction approaches. These techniques rely on

some heuristics which transform the tables by removing rows that span all columns,

unpivoting column headers, and adding extra contextual columns.

Second, we introduce features for clustering together many similar tables into a

unified collection so that knowledge about entities in one table can propagate to other

tables. These features measure the potential alignment of columns using Jaccard
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similarities, cell embeddings, and semantic types. To scale our clustering to 1.5M

tables in Wikipedia, we use set- and embedding-based approximate neighbor search

to reduce the similarity search space.

Third, we describe a new method, based on probabilistic functional dependen-

cies [Wang et al., 2009], to distinguish entity-attribute tables from the ones that

describe n-ary relations and extract knowledge from both types. We show that using

functional dependencies instead of simple heuristics (like picking the leftmost column

with unique values, as in Chapter 3), as current methods do, returns a better accuracy

that is beneficial to improve the downstream fact extraction. Moreover, to the best of

our knowledge, ours is the first method that can extract n-ary facts from tables to a

KB.

We evaluate our approach on a large sample of Wikipedia tables using Wiki-

data [Vrandečić and Krötzsch, 2014], one of the most popular KBs, as reference KB.

We report on the performance of different components of the pipeline separately, and

compare to a set of strong baselines. Additionally, we extended our evaluation to a set

of 1.5M tables extracted from Wikipedia, to evaluate the scalability. In this case, our

system managed to extract 29.5M facts which comprise 15.8M binary facts and 6.9M

more complex n-ary facts. A large percentage (approx. 77%) was novel, i.e., facts not

yet in Wikidata.

4.2 Background

We start with a short recap of some well-known notions on KBs and tables, and

introduce some notation used throughout the chapter. For a comprehensive background

on Knowledge Bases and Table Interpretation, see Chapter 2.

Tables We model our collection of tables as a corpus T of tables, which we have

extracted from the HTML of Wikipedia articles. For a given table T , we denote with

T [i][j] the cell of table T at the ith row and jth column. Every cell c is associated

to a cell value val(c) which represents the content of a cell and is either a string or

90



Chapter 4. Extracting N-ary Facts from Table Clusters

NULL. In the last case, we say that the cell is empty and denote it with the symbol

∅ . Additionally, a cell may contain some links to entity-related Wikipedia pages. In

Wikidata, every Wikipedia page is mapped to an entity. We denote with EW ⊆ E the

set of such entities, and write links(c) ⊆ EW to refer to the entities pointed by the links

in c. Some cells are marked with a span that extends multiple columns. We write

span(c) = [i, j] when cell c spans columns i to j (included) in its row. If c at row k has

span [i, j] then val(T [k][i]) = . . . = val(T [k][j]). However, the opposite does not hold,

namely two adjacent cells can have the same value but without an extended span.

Finally, we write span(c) ⊂ span(d) if span(c) = [i, j], span(d) = [k, l], i ≥ l, j ≤ l, and

j − i < l − k.

We denote with cols(T ) and rows(T ) the list of all columns and rows in T respec-

tively. We represent each column as a tuple of |rows(T )| cells and each row as a tuple of

|cols(T )| cells. We distinguish header rows from body rows based on the table’s HTML.

We write head(T ) to refer to a list of rows in T marked as headers, while body(T ) refers

to the remaining rows. Abusing notation, we write cols(body(T )) to refer to the list of

columns of the table’s body. We view T, cols(T ), rows(T ), body(T ), cols(body(T )), and

head(T ) as sets if the order of the tuples does not matter, otherwise we use the suffix

[i] to refer to the ith element in the collection (e.g., cols(T )[1] is the first column of T ).

Tuples are denoted with delimiters 〈〉. We introduce two auxiliary functions to

operate on tuples. Function append(a,B) returns a tuple where element a is appended

to tuple B. Function ·, written A ·B, returns a tuple where tuple A is concatenated

to tuple B. A union table is a table created by concatenating the body of multiple

tables. In a union table, columns may be aligned into single ones or not. In the second

case, empty cells are used to fill the gaps [Ling et al., 2013].

In this chapter, we use the relational model to specify some operations on tables.

This model views a table schema as a database relation R with attributes A1, . . . , Am,

denoted as R(A1, . . . , Am), and calls a table with such a schema an instance of R.

Attributes in the relational model are mapped to header cells in the table. Thus, they

are different than attributes used in KBs. In the former, attributes (informally) map

to the header names of the table while in the latter they are property-value pairs of
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entities.
Page Name No. Title Writer(s) Recording date Length

Elvis Presley 1. "Blue Suede Shoes" Carl Perkins January 30, 1956 2:00

Elvis Presley 2. "I'm Counting on You" Don Robertson January 11, 1956 2:25

Elvis Presley
3. "I Got a Woman" • Ray Charles

• Renald Richard
January 10, 1956 2:25

Elvis Presley 4. "One Sided Love Affair" Bill Campbell January 30, 1956 2:11

Elvis Presley 5. "I Love You Because" Leon Payne July 5, 1954 2:43

Elvis Presley
6. "Just Because" • Bob Shelton

• Joe Shelton
• Sydney Robin

September 10, 1954 2:34

(a) Entity-Attribute (EA) table

Page Name Year Chart Positions

"Hound Dog" 1956 US Billboard 8

"Hound Dog" 1956 US Singles 15

"Hound Dog" 1956 Australia (Kent Music Report) 17

"Hound Dog" 1956 Belgium (Ultratop 50 Flanders) 13

"Hound Dog" 1956 UK Singles 2

"Hound Dog" 1956 US Cash Box Magazine 1

(b) N-ary (NA) table

Figure 4.2: Examples of tables that express different information structures.

We make a distinction between Entity-Attribute (EA) and N-Ary (NA) ta-

bles. EA tables contain one column with the names of entities, which we

call key column, and every row expresses attributes of that entity in the other

columns [Yakout and Ganjam, 2012]. Therefore, one row can be translated into

a set of attributes of an entity, and represented in K with triples of the form

〈entity, attribute_relation, attribute_value〉.

NA tables lack a key column and each row expresses one n-ary fact and typically

n > 2. In this case, we say that the table expresses a n-ary relation. It has been

shown that NA tables make up a significant portion of tables on the Web [Lehmberg

and Bizer, 2019]. Table (a) in Figure 1 is an example of a EA table while Table (b)

reports a NA table.

To improve the extraction coverage, we consider the content that we can extract

from the page that contains the table. For instance, we consider the title of the

article or the table caption. We represent contextual information as strings. To

distinguish the various types of contextual information, we use pairs of the form

〈X, Y 〉 where X is the type of information and Y is the content. For instance, the

pair 〈“Page Name", “Elvis Presley"〉 is an example of contextual information for the

table in Figure 4.2a. We refer to the set of all contextual tuples associated to table T

as context(T ).

Table unpivoting Tables can be categorized either as wide or narrow, depending

on how they express information [Wickham, 2014]. If they are wide (i.e., have a
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wide layout), then it is more likely that single attribute values are represented with

dedicated columns. For instance, the header cell “US” in the third column of the

top-left table in Figure 4.1 expresses the qualifier 〈chartedIn, US_Billboard_200〉

for all the triples extracted from the cells below it. For our purposes, it is more

convenient if tables are in a narrow shape, i.e., header cells express attribute properties

rather than attribute values (the top-right table in Figure 4.1). Converting a table

from a wide shape to a narrow shape is known as unpivoting (Figure 4.3).

NarrowWide

Pivot

Unpivot

Year Single Chart
Chart

positions

1977 "Brick House" US 5

1977 "Brick House" US R&B 4

1977 "Brick House" US Dance 34

1977 "Easy" US 4

1977 "Easy" US R&B 1

1977 "Easy" US Dance —

Year Single
Chart positions

US
US

R&B
US

Dance

1977 "Brick House" 5 4 34

1977 "Easy" 4 1 —

Figure 4.3: Pivoting and unpivoting.

Wyss and Robertson [2005] provide a formal definition of unpivoting, which we

outline below for self-containment. This definition uses two additional relational

algebra operators: δ (metadata demotion) and ∆ (column deference). Given a relation

schema R(A1, . . . , Am), let r be an instance of R with n rows and let y be an attribute

that is not in R. Then δy(r) appends every A1, . . . , Am to each row in r, returning

a new instance with |r| × n rows and schema R(A1, . . . , Am, y). The operator ∆ is

used to further process the relation. Given a relation R(A1, . . . , Am, B), let r be an

instance of R and z a column name that is not in R. Then, ∆z
B(r) searches if an

element of B at row i equals to column name at position j, and if this occurs then it

copies the cell value at row i and column j in a new column with name z.

These two operators, in combination with the standard relational operators projec-

tion (Π) and selection (σ), can be used to formally define the operation of unpivoting.

Let R(A1, . . . , Ai, Bi+1, . . . , Bm) be a relation, r be an instance of R, and Bi+1, . . . , Bm
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be the attributes to unpivot. Then, unpivoting r can be expressed as:

UNPIVOTy→z
A1,...,Ai

(r) := ΠA1,...,Ai,y,z(σy=A1∧...∧y 6=Ai
(∆z

y(δy(r))))

where y is the name of the column with the unpivoted schema and z is the column

name with the values of the unpivoted columns.

Functional Dependencies To distinguish EA tables from NA tables, we make use

of probabilistic functional dependencies (pFDs), first introduced by Wang et al. [2009].

Let X, Y be two attributes of a relation R, and r be an instance of R. Then, the pFD

X →p Y indicates that two tuples in r that share the same value for X also share

the same value for Y with probability p. To compute pFDs, we use their perTuple

algorithm , which returns pFDs using probabilities computed on r.

4.3 Method

Our goal is to extract clean, unified, and linked n-ary facts from a large set of tables

to enrich a KB with new knowledge. For example, we would like to extract from

the top-left table in Figure 4.1 the n-ary fact that the song “Brick House” charted

in the “US Billboard 200” chart at position 5 in 1977. To represent this fact, we use

three triples: The triple t = 〈Brick_House, chartedIn, US_Billboard_200〉 and the

triples 〈qt, pointInTime, 1977〉 and 〈qt, ranking, 5〉, where qt is a fresh entity used

to represent the qualifiers mapped to triple t.

We use Wikidata [Vrandečić and Krötzsch, 2014] as target KB because of its

popularity and large coverage, and focus on Wikipedia tables since they contain a

large amount of interesting factual information related to Wikidata entities. Our

method, which is graphically depicted in Figure 4.1, can be viewed as a pipeline of

three main operations: Table Reshaping and Enrichment (Section 4.3.1), Clustering

(Section 4.3.2), and KB Integration (Section 4.3.3), each discussed below.
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4.3.1 Reshaping

In Wikipedia, some tables are generated using well-defined and popular templates

while others are built using modified copies of templates taken from related pages.

Consequently, tables that express similar content can be very diverse from each other

and this hinders a successful factual extraction.

To counter this problem, we apply a procedure to “normalize” the tables. This

procedure, which we refer to as reshape(T ), performs three operations on every ta-

ble T ∈ T . The first operation merges or removes cells that span all the columns

(mergechunks(T ), Section 4.3.1). The second operation unpivots some columns to trans-

form wide tables into narrow ones (smartunpivot(T,U), Section 4.3.1). Finally, tables

are further enriched with extra contextual information (addcontext(T ), Section 4.3.1).

Merging table chunks

Sometimes, Wikipedia contributors decide to add cells that span all the columns for

various purposes. For example, such cells are added below the row they belong to

keep the table from becoming too wide, or at the bottom as a footnote.

These cells can confuse the interpretation procedure since they can, for instance,

be recognized as separate rows with new entities. To avoid these cases, the function

mergechunks (which is formally defined in Algorithm 1), identifies these cells and

copies their content to other parts of the table. The algorithm applies three heuristics

H1, H2, H3 that we observed work well in practice:

• H1 If cells that span all the columns appear at every even row of the body, i.e.,

at row index i = 2, 4, . . ., then we assume that the cells contain extra information

about the preceding row. Thus, we add an extra column with empty cells, remove

the ith row and copy its content in the extra column at row i− 1 (Figure 4.4a);

• H2 If H1 does not apply, but there are cells that span all columns as last rows in

the table, then we assume that they contain a footnote. In this case, we remove

the rows and add their content as contextual information of type “footnote” to the

table;
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Algorithm 1 mergechunks(T )

1: if |cols(T )| = 1 then return T
2: B := body(T ) H := head(T ) n := |B| m := |cols(T )|
3: H ′ := 〈〉 B′ := 〈〉 C := 〈〉
4: if span(B[2i][1]) = [1,m] for each 1 ≤ i ≤ n

2 then
5: for i := 1 to |H| do append(H[i] · 〈 ∅ 〉, H ′)
6: for i := 1 to n

2 do append(B[2i− 1] · 〈B[2i][1]〉, B′)
7: else
8: i := n
9: while i ≥ 1 do

10: if span(B[i][1]) = [1,m] then
11: append(〈“footnote”, val(B[i][1])〉, C)
12: else break
13: i := i− 1

14: if ∃j such that 1 ≤ j ≤ i and span(B[j][1]) = [1,m] then
15: D := ∅

16: for i := 1 to |H| do append(〈D〉 ·H[i], H ′)
17: for j := 1 to i do
18: if span(B[j][1]) = [1,m] then D := B[j][1]

19: else append(〈D〉 ·B[j], B′)

20: else
21: H ′ := H B′ := 〈B[1], . . . , B[i]〉
22: Let T ′ be a table s.t. head(T ′) = H ′, body(T ′) = B′, and context(T ′) = context(T ) ∪ C
23: return T ′

• H3 If H1 does not apply, but there are multiple cells that span all columns that

appear in the body, then we treat them as extra information about the rows below

them. To this end, we add an extra column with empty cells, remove every row

with index i with a cell that spans all columns and copy its content in the extra

column at row i+ 1, . . . , j where j is either the end of the table or the row index of

the following cell that spans columns (Figure 4.4b).

After removing all-column spanning cells, we analyze the table headers. Wikipedia

tables typically have one or more header rows at the top of the table, but can also

have sub-headers at other positions. Whenever a header row is encountered after a

body row, we split the table horizontally into distinct new tables. In other cases, table

schemas are repeated side-by-side. When we detect such a repetition, we split the

table vertically and concatenate the left rows to the right rows of the table.
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(a) Table processed by H1 (b) Table processed by H2

Figure 4.4: Examples of tables processed by mergechunks heuristics.

Table Unpivoting

Algorithm 2 smartunpivot(T,U)

24: H := head(T ) m := |cols(T )| b := c := d := 0
25: for i := 1 to |H| do
26: for all U ∈ U do
27: Let ul be the returned value of U(T,H[i][l])
28: Let [j, k] be the largest interval s.t. uj = . . . = uk = true
29: if (k − j) > (d− c) then
30: b := i c := j d := k

31: if b = 0 then return T
32: y := z := ∅

33: if b > 1 ∧ span(H[b− 1][c]) = [c, d] then z := H[b− 1][c]

34: Let R(A1, . . . , Ac−1, Bc, . . . , Bd, Ad+1, . . . , Am) be a relation with Ai := H[b][i] and
Bi := H[b][i]. Also, let r be an instance of R with body(T )

35: s = UNPIVOTy→zA1,...,Ac−1,Ad+1,...,Am
(r)

36: Let T ′ be a table where:
◦ head(T ′) = 〈〈A1, . . . , Ac−1, Ad+1, . . . , Am, y, z〉〉
◦ body(T ′) = s

37: return T ′

Wide tables tend to contain column headers that express value strings rather

than attribute strings. We would like to transform such tables so that the content

of these cells appears in the body instead of the header. For instance, the top-left

table in Figure 4.1 contains the columns US, US R&B, US Dance which are the values

of attributes with property chartedIn. This table should be transformed into the
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top-right table in Figure 4.1.

To this end, we must tackle two challenges. First, we need to define a procedure

that, given an input table, detects a sequence of horizontally adjacent header cells

that encode attribute values. The second challenge consists of extracting the new

column header associated with these values so that we can unpivot the table.

We tackle the first challenge with a set of six boolean functions that encode

some heuristics, while we rely on the content of previous headers to extract the new

column header. Our procedure for unpivoting the table can be viewed as a function

smartunpivot which, given in input table T and set of boolean functions U , returns an

unpivoted version of T (or T if no unpivoting was possible).

We outline the functioning of smartunpivot on table T below (the pseudocode is in

Algorithm 2). Each boolean function U1, . . . , U6 ∈ U receives in input a table cell and

returns true if the encoded heuristics matches with the cell. First, the procedure scans

the headers of T row-by-row and invokes all boolean functions in U with every cell in

the input. An interval of adjacent cells for which a function has returned true maps

to a potential set of columns with attribute values. We select the largest interval of

such cells for unpivoting the table. Let us assume that this interval occurs at row i

and spans columns [j, k]. To retrieve the new column header, we consider the cell at

header row i− 1 (if any) and column j. If this cell has a span [j, k], then we pick its

value as column header, otherwise, we set the new column header with an empty cell.

Let R(A1, . . . , Ai−1, Ai, . . . , Ak, Ak+1, . . . , Am) be a relation that represents the

schema of T where each attribute A1, . . . , Am maps to the header cell at head(T )[i].

Moreover, let y, z be two fresh attributes that will contain the unpivoted attributes

and the content of the unpivoted columns respectively. We map y to ∅ , while z maps

either to a cell with the new column header or to ∅ if no relation was found. In the

top-right table of Figure 4.1, y would map to the 4th column while z is the 5th column.

Finally, let r be an instance of R with the body of T . We unpivot T by first

executing r′ := UNPIVOTy→zA1,...,Ai−1,Aj+1,...,Am
(r), and then creating a new table T ′ with

body(T ′) := r′ and head(T ′) := 〈〈A1, . . . , Ai−1, Aj+1, . . . , Am, y, z〉〉.

In the remaining, we describe the heuristics encoded by the boolean functions.
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U3 (linkAgent)

U4 (sRepeated)

U5 (headerLike)

U6 (rareOutlier)

Year Australian Open French Open Wimbledon US Open

Athlete Event
Downhill Slalom Total

Time Rank Time Rank Time Rank

Summit
State

Canada France Germany Italy UK USA EU

Atlantic Division W L T OTL GF GA PTS

Figure 4.5: Examples of candidate tables headers for unpivoting. Cells in green are
returned by the named heuristic.

Figure 4.5 shows examples of Wikipedia table headers for which these functions will

apply.

• U1 (nPrefix) Returns true if the cell starts with numeric characters;

• U2 (nSuffix) Returns true if the cell ends with numeric characters;

• U3 (linkAgent) Returns true if the cell contains a hyperlink to the Wikipedia page

of an entity with type Agent in Wikidata, i.e.,

U3(c) := ∃e ∈ links(c) s.t. 〈e, isA, Agent〉 ∈ K (4.1)

The underlying intuition is that entities of the type Agent, which in Wikidata

includes people and organizations, are unlikely to refer to properties but refer

instead to attribute values.

• U4 (sRepeated) Returns true if the cell spans an interval of columns and there is

another row where the cells have equal value in the same interval. More formally, let

T and ρ be the table and row respectively where c appears, and let [i, j] = span(c).

U4(c) := ∃s ∈ head(T ) s.t. ρ 6= s ∧ val(s[i]) = . . . = val(s[j]) (4.2)

• U5 (headerLike) Returns true if the cell appears in T more frequently either in the
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body or in a header cell that is spanned by another cell. Before we define U5, let

Nt, Nb, Ns be as follows:

Nt(c) = |{T ∈ T : c ∈ T}| (4.3)

Nb(c) = |{T ∈ T : c ∈ body(T )}| (4.4)

Ns(c) = |{T ∈ T : c, d ∈ head(T ) ∧ span(c) ⊂ span(d)}| (4.5)

Then, U5(c) := Nb(c)+Ns(c)
Nt(c)

> 0.5.

• U6 (rareOutlier) Returns true if the frequency of the cell in the headers of the tables

in T is more than one standard deviation smaller than the average frequency of the

cells of its header. Let T be the table where cell c appears, and µ(X) and σ(X) be

the mean and standard deviation of X. Then,

Nh(c) = |{T ∈ T : c ∈ head(T )}| (4.6)

µh(T ) = µ({Nh(c) : c ∈ head(T )}) (4.7)

σh(T ) = σ({Nh(c) : c ∈ head(T )}) (4.8)

and U6(c) := Nh(c) < µh(T )− σh(T ).

Adding Contextual Information

Algorithm 3 addcontext(T )

38: A := 〈〉 B := 〈〉 H := 〈〉 J := 〈〉
39: for all C ∈ context(T ) do
40: append(〈C[1]〉, A) append(〈C[2]〉, B)

41: for i := 1 to |head(T )| do append(A · head(T )[i], H)

42: for i := 1 to |body(T )| do append(B · body(T )[i], J)
43: Let T ′ be a table where head(T ′) = H and body(T ′) = J
44: return T ′

Often, the context of a table can help the interpretation procedure to link entities

to the KB more precisely. For example, a table may be located in a section whose

100



Chapter 4. Extracting N-ary Facts from Table Clusters

header contains a keyword (e.g., “song”) or a date that is important for linking some

entities. To this end, we would like to add such important contextual information to

the table.

For each table T ∈ T , we add to context(T ) three pairs: one with the page

title, one the section title, one with the table caption, provided these are available

in the associated Wikipedia page. Moreover, procedure mergechunks can optionally

add another set of pairs with footnotes. Procedure addcontext(T ), (pseudocode in

Algorithm 3) has the task of adding the pairs in context(T ) to T . For each pair

〈X, Y 〉 ∈ context(T ), it adds an extra column with header X and cells values equal to

Y . The table in Figure 4.2b shows an example of a table modified by this procedure.

Here, addcontext has added an extra column with the title of the page (“Hound Dog”).

4.3.2 Clustering

Some tables can be easily matched to the KB while others are more problematic, espe-

cially if they cover a domain that is not yet covered by the KB. For example, consider

the table in Figure 4.2b. This table contains a column titled “Chart" but Wikidata

does not contain any fact that involves the property chartedIn in combination with

the entities mentioned in this table. Because of this incompleteness, interpreting this

table on its own is hard. However, if there is another table with a similar schema

but that can be matched to Wikidata, we can cluster them together so that we can

propagate the knowledge obtained by matching one table to the other. Following

this intuition, the next step in our pipeline consists of finding clusters of tables that

express the same latent semantic relation. To this end, we construct union tables

using a set of approximate indexes followed by similarity functions designed for our

specific use-case.

Due to the large size of our corpus (1.5M tables), computing our similarity scores

for each pair of tables is computationally too expensive. To counter this problem, we

perform a two-level clustering. First, we compute a set of table blocks, i.e., groups of

tables that appear to be similar according to an approximate k-Nearest Neighbors

procedure (k-NN) (Section 4.3.2). Then, we calculate our similarity scores on the
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reduced set of table pairs (Section 4.3.2). Finally, we construct a graph G = 〈T ,W〉,

which has the tables in T as vertices, and the similarity scores defined in the sparse

matrix W ∈ RT ×T as weighted edges. We partition this graph into clusters of tables,

from which we construct the final set of union tables (Section 4.3.2).

Blocking

Since computing the similarity score between the 1.5Mx1.5M pairs of tables in T is

computationally expensive, we construct four approximate indexes to retrieve, for a

given table, the top-k similar tables using a more coarse-grained definition of similarity.

We refer to the collection of similar k + 1 tables as a table block. In our experiments,

we use a fairly high value of k (100) to avoid that good table pairs are ignored.

The four approximate indexes I1, . . . , I4 are constructed as follows. Two indexes

I1 and I2 employ Locality Sensitive Hashing (LSH) with MinHash [Zhu et al., 2016],

which provides approximate Jaccard similarity between the cell values in two tables.

We employ LSH because we have observed that two tables are more likely to express

the same semantic relation if many cell values overlap. Therefore, we construct

one approximate LSH index considering the header of the table (I1), and another

considering the body of the table (I2).

The other two indexes I3 and I4 perform approximate k-NN with the embeddings

of header rows and body columns. We use embeddings because we noticed that

sometimes table pairs might not contain exactly the same values, but words are

nevertheless semantically similar. We exploit this observation considering pre-trained

GloVe word embeddings [Pennington et al., 2014] for every column and header row in

our tables. To create cell embeddings, we simply sum the word embeddings of the

words in the cell, and create header row and column embeddings by averaging the

cell embeddings. Then, we index the vectors of the headers (I3) and of the columns

(I4) and query them using approximate k-NN search offered by Facebook’s library

FAISS [Johnson et al., 2019], one of the most scalable implementations of k-NN with

embeddings.

After the indexes are computed, we retrieve the top k similar tables for each table
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in T using each index. This yields a set of 4(k + 1) ∗ |T | blocks. We consider the

union of all blocks returned by all indexes because at this stage we do not want to

further sacrifice recall. For every pair of tables that appear in the same block, we

compute a more fine-grained similarity score as described below.

Matching

The goal of our proposed similarity score between two tables is to measure to what

extent pairs of columns in the two tables can be aligned. This follows the intuition

that two tables express the same semantic relation if many of their columns can be

aligned.

The similarity score between two tables is an aggregation of the similarity scores

between column pairs that are computed considering either the body or headers of

two tables. The similarity scores between column pairs rely on a setM of functions,

which we call matching functions. These functions, described below, receive in inputs

two sets of cells, and compare the overlap of cell values, and the similarity with word

embeddings and semantic types.

When comparing the columns of two tables A and B with mA and mB columns

respectively, using matching function f ∈ M, we compare every possible pair of

columns between A and B. We create an alignment between columns in A and

columns in B using the greedy procedure greedycolsim(A,B, f) shown in Algorithm 4.

This procedure creates min(mA,mB) alignments by selecting the best column matches

according to f , and aggregates those similarity scores by averaging over both mA and

mB.

The procedure greedycolsim returns a table alignment score using one matching

function f . We invoke this procedure with every f ∈ M. The scores are then

aggregated in a manner described by procedure aggsim, Algorithm 5. The application

of aggsim(A,B,M, θ) on tables A and B is as follows. Generally, the aggregation of

semantic matcher scores depends on whether they compute “optimistic” or “pessimistic”

similarities and whether there is supervision or heuristics available [Do and Rahm,

2002]. In our case, we take an “optimistic” approach assuming that any of our matching
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functions may be the most relevant for a given pair of tables. Therefore, we take the

best scored obtained by any matching function (line 53). Note that the application in

line 53 considers only the body of the tables. We have observed that often correctly

matching table pairs have also aligned headers. Therefore, we invoke the matching

functions considering the tables’ headers and optimistically max-aggregate them

(line 55). Then, the final score is obtained by combining them using their weighted

mean (line 56). The aggregation weight θ is found using cross-validated grid-search.

Algorithm 4 greedycolsim(A,B, f)

45: C := body(A) D := body(B)
46: mA := |cols(A)| mB := |cols(B)|
47: EA := {1, . . . ,mA} EB := {1, . . . ,mB} M := ∅
48: while |EA| > 0 and |EB| > 0 do

49:
〈i, j〉 := argmax

〈i,j〉∈EA×EB

f(cols(C)[i], cols(D)[j])

50: EA := EA \ {i} EB := EB \ {j} M :=M ∪ {〈i, j〉}
51: S :=

∑
〈i,j〉∈M f(cols(C)[i], cols(D)[j])

52: return 1
2(

S
mA

+ S
mB

)

Algorithm 5 aggsim(A,B,M, θ)

53: sb = maxf∈M greedycolsim(A,B, f)
54: hA = head(A) hB = head(B)
55: sh = maxf∈M f(hA, hB)
56: return θsh + (1− θ)sb

Next, we discuss our matching functions fj, fe, fd ∈M.

fj: Set Similarity. The simplest way to view of headers and columns is as a set of

discrete cell values. To model whether two sets of discrete values are similar, we use

their Jaccard index:

fj(a, b) =
|a ∩ b|
|a ∪ b|

(4.9)

fe: Word Embedding Similarity. Following [Nargesian et al., 2018], we create

word embeddings for cells by summing the word embeddings of the tokens in their
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values. For computing the similarity score, we use the positive cosine distance between

the cell embedding, i.e.,

fe(a, b) = max(0,
w̄(a) · w̄(b)

‖w̄(a)‖‖w̄(b)‖
) (4.10)

where w̄(X) is the mean of the embeddings of the cell values in X.

fd: Datatype Similarity. The functions above consider only the cell values for

computing the alignment score. The hyperlinks to Wikipedia pages that are present

in cells can be used to create a semantic representation based on the types of entities

that they link to. Additionally, we can exploit the repeated patterns in cell sets when

they contain composite values involving multiple datatypes.

We proceed as follows: for every cell, we extract a number of patterns corresponding

to possible semantic types. The patterns are created by detecting the named entities in

the cell (we use the library Spacy (spacy.io)), and combining them with their hyperlinks.

We replace each named entity in the cell with all the types of the entity in the KB.

This results in patterns such as [Football Cup] final [YEAR]. Let a and b be two

sets of cells, Np(a) be the number of unique cells in a from which pattern p is extracted,

and P be the set of all patterns extracted from a and b. For every pattern extracted

from a, we calculate its overlap score as Op(a) = Np(a) / |a| and keep only those

patterns for which Op(a) > τ (default value τ = 0.5). Our datatype similarity function

is the cosine similarity between the pattern overlap vectors O(a),O(b) ∈ [0, 1]P of two

cell sets:

fc(a, b) =
O(a) ·O(b)

‖O(a)‖‖O(b)‖
(4.11)

Clustering

Given the weighted graph G of table union candidate pairs, we perform cluster-

ing to find sets of unionable tables. This is equivalent to partitioning a similarity

graph [Lehmberg and Hassanzadeh, 2018]. To this end, we employ Louvain Community

Detection [Blondel et al., 2008] – a state-of-the-art algorithm that scales to large
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graphs such as ours.

The Louvain algorithm optimizes a value known as modularity, which measures the

density of links between different communities compared to those inside communities

themselves. Recall that W is the matrix of weights in the edges, and let z =
∑

ijWij

be the sum of its values. Given an assignment of a community ci for each node i, the

modularity is defined

Q =
1

2z

∑
ij

[
Wij −

kikj
2z

]
δ(ci, cj) (4.12)

where ki and kj are the sum of the weights of the edges attached to nodes i and j

respectively, and δ is the Kronecker delta function. Initially each node is in its own

community, after which two steps are alternated until convergence. In the first step,

each node is moved to the community that maximizes modularity. In the second

step, the procedure constructs a new weighted graph G ′ and replaces G with it. In G ′,

the nodes map to communities, weighted edges are an aggregated score of the edges

between nodes in different communities in G, while edges between nodes in the same

community in G are represented by self-loops. The runtime of this procedure appears

to scale with O(n · log2n) in the number of nodes [Lancichinetti and Fortunato, 2009].

After finding clusters of similar tables, we align all columns of the tables within

each cluster. First, we create a matrix of max-aggregated column similarities using

the matching functions in M for each pair of columns in the tables in the cluster.

Then, we run agglomerative clustering [Manning et al., 2008] with complete linkage on

this matrix to identify groups of similar columns. This iteratively combines the two

clusters (i.e., two groups of columns) which are separated by the shortest distance.

Once the columns are clustered together, we create a union table with as many

columns as clusters. Then, the tables are concatenated filling the gaps with empty

cells. To create a header for this table, we take the most frequent header cell of each

column cluster. The set of union tables will be the input of the next stage of our

pipeline.
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4.3.3 Integration

The last step in our pipeline consists of extracting facts from the union tables. This

phase, shown at the bottom of Figure 4.1, determines the type of the union table and

extracts the facts from it.

Detecting n-ary union tables

A key challenge in extracting facts from the union tables is distinguishing between EA

and NA union tables. To this end, we make use of pFDs. This gives us a robust signal

for union tables because their large number of rows prevents the pFDs from expressing

noise, which occurs very frequently in small tables. Let R(A1, . . . , Am) be the relation

associated to union table T and r be the instance of R with the body of T . We run

perTuple on r to compute the set FT of pFDs. Let B be the attribute of R with

the highest harmonic mean of the multiset {p : A →p B ∈ FT} (ties are broken by

taking the leftmost column). If the harmonic mean is greater than a given threshold υ

(default value is 0.95) then we assume that T is a EA table and the column associated

to B is the key column. Otherwise, T is an NA table.

Entity Linking

The extraction of factual knowledge from the union table is split into two phases.

First, we link the cells in T to entities in K, regardless the type of T . We make use of

the hyperlinks whenever they are available and maximize the coherence of entities if

multiple matches are possible, as described in Chapter 3. Note that here the large

number of rows in the union tables is particularly helpful as it provides a clearer

signal for linking the entities. In the following, we denote with entity(c) ∈ E the entity

associated with cell c if we found a match, otherwise entity(c) = NULL.

Fact Extraction

We proceed differently depending on whether T is an EA or a NA table.

• If T is a EA table, we first retain all pFDs with a sufficiently high probability,
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Figure 4.6: A statement on Wikidata with qualifiers (left), and its reification in RDF
(right). Note that Wikidata represents the main fact with a single triple, but also uses
an auxiliary entity to which the qualifiers are associated (URI prefixes are shown here
with standard abbreviations).

i.e., greater than υ, which we call F>υ
T . For each pFD A→p B ∈ F>υ

T , we search

for a property in K suitable to represent the dependency between A and B.

Let ColX ∈ cols(T ) be the column of T associated with the attribute X in R.

First, we compute the set of all pairs of entities mentioned in the columns, i.e.,

EA,B := {〈a, b〉 : ∀i. a = entity(ColA[i]) ∧ b = entity(ColB[i] ∧ a 6= NULL ∧ b 6=

NULL)}. Then, the set of matched facts for A →p B and property p ∈ P in K

is MA,B(p) := {〈b, p, a〉 : 〈a, b〉 ∈ EA,B} ∩ K. We pick the property p ∈ R such

that p = arg maxp∈P |MA,B(p)|, that is, the property with the maximum overlap,

like [Muñoz et al., 2014]. Then, we output the fact 〈b, p, a〉 for each 〈a, b〉 ∈ EA,B
so that it can be added to K.

• If T is a NA table, let EA,B,C be the set of tuples for attributes A,B,C defined

analogously to EA,B. For every possible pair of attributes A,B and property

p ∈ P , we first identify the columns that contain entities that appear in qualifiers

of facts in MA,B(p). To this end, we denote with N(A,B,C, p) := {〈y, c〉 :

〈a, b, c〉 ∈ EA,B,C ∧ 〈qb,p,a, y, c〉 ∈ K} the set of qualifiers that could be retrieved

considering the entities in ColC , and with Q(A,B, p) := {C : N(A,B,C, p) 6= ∅}

the set of attributes where some qualifiers were found. Then, we consider

all A,B, p with the highest number of qualifier-matching columns |Q(A,B, p)|

because these are the potential n-ary relations with the largest coverage of

columns. If there are multiple A,B, p with the same highest |Q(A,B, p)|, then

we choose the one with the highest number of matched facts |MA,B(p)|. Finally,
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for each X ∈ Q(A,B, p), we identify the property rX that has the highest

frequency in the multiset {y : 〈y, c〉 ∈ N(A,B,X, p)}. This property will be

the one used to create the qualifiers with the entities in ColX . At this point

we are ready to extract the facts from T : We output the fact 〈b, p, a〉 for each

〈a, b〉 ∈ EA,B, and, for each X ∈ Q(A,B, p), we output the triple 〈qd,p,c, rX , e〉

for each 〈c, d, e〉 ∈ EA,B,X .

Example 4.3.1. In Phase 2 of Figure 4.1, we show the union table constructed from

the clustering step. Due to its detected pFDs, we classify it as an NA union table,

and attempt to find matching qualifiers in K. Let C, S, and P be the columns in

this table that have the headers “Chart”, “Single” and “Position”, respectively. Then,

we have that 〈US_Billboard_200, Brick_House, 5〉 ∈ EC,S,P (US_Billboard_200

is the entity that matches the cell “US” in the table). Let’s assume that the triple

〈qx, ranking, 5〉 ∈ K where x = 〈Brick_House, chartedIn, US_Billboard_200〉.

This means that 〈ranking, 5〉 ∈ N(C, S, P, chartedIn) and P ∈ Q(C, S, chartedIn).

If C, S, and chartedIn have the highest number of these qualifier-matching columns

Q(C, S, chartedIn) and the highest number of matches MC,S(chartedIn) of all col-

umn pairs and properties, we use the property chartedIn to extract facts from columns

C and S. Finally, if ranking is the most frequent property in N(C, S, P, chartedIn),

we use it for extracting qualifiers from column P . Let us assume that EC,S,P contains

another tuple 〈US_Billboard_200, Thriller, 1〉. In this case, the system will out-

put the facts f = 〈Thriller, chartedIn, US_Billboard_200〉 and 〈qf, ranking, 1〉,

which is graphically depicted in Figure 4.6.

4.4 Evaluation

For our empirical evaluation, we considered the corpus of 1,535,332 Wikipedia tables

from [Bhagavatula et al., 2013], with 1,426,303 unique tables of which 26,260 occur on

more than one page. There are 330,221 unique headers, of which 247,403 (75%) occur

only once. This means there are 1,287,929 tables that have a header that is shared

by some other table. On average, these tables have 11 rows. The experiments here
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presented were performed with a Wikidata dump from December 2019.

4.4.1 Annotations

Since there were no available gold standard to test our method, we created it using

three human annotators. To this end, we developed a GUI that showed the page title,

description, section title and caption, and table contents. We sampled 1000 random

tables, all from different Wikipedia pages, which have 3449 columns in total. We

aggregated these annotations by majority vote, with moderate agreement between

annotators (Fleiss’ κ = 0.57).

First, the annotators annotated the columns that should be unpivoted by selecting

a horizontal sequence of cells in the header of a table. The guidelines specified that

the sequence should “contain names of a related set of concepts that do not describe

the content of the column below them.” After annotation, the table was shown to

the annotator in unpivoted form for verification. This resulted in 151 tables from the

sample to unpivot.

Then, the annotators were asked to create table unions from the unpivoted tables

resulting from the previous phase by iteratively merging clusters. They were presented

with one query cluster and several candidate clusters, ranked according to the matchers

described above. All clusters were presented as a union table (i.e. “vertical stack”) of

all tables in that cluster. From these candidate clusters, the annotators were asked to

identify the clusters that expressed the same relation as the query table. As a proxy,

the guidelines suggested that they could ask themselves: “Would it make sense to

add every row in the candidate table to the query table?” Then, they identified the

aligning column pairs by either selecting a query column or adding a new column to

the clustered union table for every candidate column. This resulted in 577 clusters

with a total of 2479 columns, in which annotators identified a key column (marking it

as an EA table), or identified it as an NA table.

Finally, we let annotators evaluate the property predictions for union table columns

that were returned by our system. They assessed the correctness of every KB property

that was assigned to a column based on whether its semantics corresponded to that of
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Heuristic Pr. Re. F1

headerLike 0.30 0.33 0.31
numPrefix 0.73 0.27 0.39
sRepeated 0.89 0.12 0.21
numSuffix 0.52 0.09 0.16
linkAgent 0.70 0.05 0.09

rareOutlier 0.14 0.02 0.04
All Heuristics 0.44 0.88 0.58

Table 4.1: Precision, Recall and F1 of unpivot detection heuristics

0k 1000k
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Figure 4.7: Number of cells processed by each heuristic in the mergechunks algorithm

all rows.

Although the collected annotations do not allow us to test every single component of

the system, they are sufficient to evaluate the critical ones and can give us an overview

of the overall performance. Below we report the results of some key experiments.

4.4.2 Table Reshaping

In Figure 4.7, we show the number of cells that span all columns which were identified

by each heuristic from Section 4.3.1. Without the application of the mergechunks

procedure, each of these 1,554,692 cells would be located in the wrong columns, where

they would interfere with the subsequent operations.

On the entire dataset with 1.5M tables, smartunpivot predicted that 260,528 unique

headers should be unpivoted, corresponding to 933,949 different tables. A breakdown

of prediction scores per heuristic is shown in Table 4.1. The heuristics are designed to

be complementary because they cover a different type of header. Therefore, they are

not expected to individually have high recall, but ideally the recall should be high

when they are combined together. From Table 4.1, we can see that this is indeed the

case with a F1 of 0.58. Examples of false positives of these heuristics include attribute

labels that occur frequently in table bodies (such as “director”). The false negatives
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Reshape Clusters ARI AMI H. C. V.
- One per table 0.00 0.00 1.00 0.85 0.92
- Same Header 0.55 0.55 1.00 0.90 0.95

Model Same Header 0.55 0.56 1.00 0.90 0.95
Oracle Same Header 0.56 0.57 1.00 0.90 0.95
Model Only Header Sim. 0.83 0.77 0.97 0.95 0.96
Model Only Body Sim. 0.69 0.67 0.99 0.93 0.96
Model Both Sim. 0.88 0.85 0.99 0.97 0.98
Model Oracle 0.93 0.94 1.00 0.98 0.99

Table 4.2: Clustering ablation for different configurations

include values for which we do not have enough statistics to result in high heuristic

scores.

4.4.3 Table Clustering

Table 4.2 reports a feature ablation study with various combination of reshaping

and clustering methods. The “Oracle” reshaping strategy unpivots the tables on

annotations while “Model” uses our reshape(). The “Same Header” clusters are made

by grouping tables with the same header and the “Oracle” clusters are based on the

gold-standard annotations. We show the performance of our clustering phase when

using only the header similarities (θ = 1 in Alg. 5), the body similarities (θ = 0 in

Alg. 5), and all similarity functions together (θ set in Alg. 5 with cross validation).

We use several scoring functions to evaluate the generated clusters. Because

clusters can have very different sizes, and there are many clusters of a single element,

some of these metrics are adjusted for chance to reduce the scores of random or

degenerate clusterings. The Adjusted Rand Index (ARI) expresses the cluster and

class agreement of item pairs, adjusted for chance [Hubert and Arabie, 1985]. The

Adjusted Mutual Information (AMI) expresses the mutual information between the

clusters and classes, adjusted for chance [Vinh et al., 2010]. Furthermore, a clustering

result satisfies Homogeneity (H.) if all of its clusters contain only data points which

are members of a single class. A clustering result satisfies Completeness (C.) if all

the data points that are members of a given class are elements of the same cluster.

The V-measure (V.) is their harmonic mean (similar to the F1 score) [Rosenberg and
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Accuracy
Method EA NA Both EA pct.

Non-num. baseline 0.29 0.10 0.39 90%
Entity baseline 0.24 0.20 0.43 74%

Ours 0.45 0.77 0.66 36%

Table 4.3: Key column prediction accuracy for EA tables, NA table detection accuracy,
both tasks combined, and the EA table percentage predicted (EA pct.). The true
percentage of EA tables in our annotated sample is 35%

Existing Facts in K New Facts
Precision # Context # Context

Binary 0.65 4,708,865 33% 15,800,524 29%
N-ary 0.92 2,122,518 22% 6,901,790 19%

All 0.74 6,831,383 30% 22,702,314 26%

Table 4.4: Relation matching precision, number of matched and new facts, and
percentage of matched and new facts that involve the table context

Hirschberg, 2007].

From Table 4.2, we see that clustering using only similarities of headers (“Only

Head Sim.”) outperforms the one that considers the body (“Only Body Sim.”), but

their aggregation gets us nearest to the performance of the oracle, which is built with

human annotations.

4.4.4 Table Interpretation and KB Integration

In Table 4.3, we report the performance of our key-column and n-ary table detection

approach, and compare it to two baselines. The “Non-numeric” baseline selects the

rightmost non-numeric column that contains at least 95% unique values if it exists,

and the “Entity” baseline does the same thing for columns which contain entities [Ritze

et al., 2016]. If such columns do not exist, they predict the table is n-ary. Note that

these baselines are the most commonly used ones by state-of-the-art systems, and

our own system described in Chapter 3. Our approach is more accurate for both EA

tables and NA tables, and closest to predict the correct rate of EA tables. In fact,

the baselines are severely biased and select EA tables in 90% and 74% of the times,

incorrectly labeling many NA tables and consequently precluding the extraction of
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Tables Columns

Individual 173 (17%) 267 (8%)
Union 193 (33%) 419 (17%)

Table 4.5: Number of matched tables and columns in annotated sample

n-ary facts. In contrast, our performance is much closer to the true rate of 35%.

In Table 4.5, we compare the property matching counts for individual tables from

the annotated sample to the counts for our union tables. The percentage of (union)

tables and columns for which we could match KB properties is higher for the union

tables, which indicates that creating union tables from clusters leads to more matched

properties that we can use for fact extraction.

Finally, Table 4.4 reports the precision for binary and n-ary facts extracted by our

system on the gold standard. Interestingly, we observe that our system is more precise

at extracting n-ary facts instead of binary facts. We applied our pipeline to the corpus

of 1.5M tables and our system extracted 29.5M facts. Of these, 77% are novel facts,

i.e., not available in Wikidata. The columns titled “Context” report the percentage of

facts that involved the extra columns added by addcontext(). The large ratio indicates

that including external context is beneficial as it leads to more extractions.

4.5 Conclusion

In this chapter, we tackled the problem of automatically integrating the knowledge

in Wikipedia tables into a KB. In particular, we focused on the extraction of both

EA and NA tables. Our pipeline introduces new heuristics for table transformation

based on, among others, unpivoting, which allows us to consider more tables. Then,

our method uses clustering to alleviate the problems of KB incompleteness and table

diversity. Finally, the integration step judiciously interprets the table, distinguishing

EA tables from NA ones and extracts facts in a format suitable for a KB integration.

We carried out an empirical evaluation, relying on manual annotators to verify the

high quality of our extractions. Our implementation is scalable as we were able to

process all 1.5M tables from Wikipedia. More generally, all steps except the Louvain
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algorithm for clustering scale linearly with the number of tables.

Future work includes creating a model for filtering the extracted facts to boost their

precision, developing a semi-supervised model for table transformation, and designing

more sophisticated alignment functions for improving the quality of the table clusters.

Additionally, the performance of our pipeline on non-Wikipedia tables remains an

open question. In particular, our pipeline assumes that there is some overlap between

the entities mentioned in the tables and in the KB and that such entity mentions can

be successfully linked to the KB. It is interesting to study whether we can relax such

assumptions so that our pipeline can be applied on different table corpora.
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CHAPTER 5

Building a KB from Tables in Scientific Papers

In this chapter, we describe our research on how to build a coherent KB from tables

on a new domain, with minimal human effort. By focusing on tables from scientific

papers, we put our work on information extraction from tables in practice, within a

highly dynamic domain that warrants flexible human supervision and control.

Tables in scientific papers contain a wealth of valuable knowledge for the scientific

enterprise. To help the many of us who frequently consult this type of knowledge,

we present Tab2Know, a new end-to-end system to build a Knowledge Base (KB)

from tables in scientific papers. Tab2Know addresses the challenge of automatically

interpreting the tables in papers and of disambiguating the entities that they contain.

To solve these problems, we propose a pipeline that employs both statistical-based

classifiers and logic-based reasoning. First, our pipeline applies weakly supervised

classifiers to recognize the type of tables and columns, with the help of a data labeling

system and an ontology specifically designed for our purpose. Then, logic-based

reasoning is used to link equivalent entities (via sameAs links) in different tables. An

empirical evaluation of our approach using a corpus of papers in the Computer Science

domain has returned satisfactory performance. This suggests that ours is a promising
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1. INTRODUCTION

Figure 1.1: Results table from ICDAR 2013

task. Tables, on the other hand, provide direct structured data which is easily ingestable

into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the

results for the ICDAR 2013 document recognition competition (1). The information density

in this table is incredible. We see multiple method names, some of which are even directly

linked to citations, with their respective recall, precision and F-score. If the structure of

this table is known, structured data could easily be extracted. This data were to be of

great use for the augmentation of existing knowledge bases. An example relationship that

could be extracted would be a method and its score. The caption "Ranking of submitted

methods to task 1.1" also gives us additional insights. We know that task 1.1 is probably

defined somewhere else in the document, and linking this to the performance of a specific

method is of great value. A simple search in the document provides us with the information

that task 1.1 is "Text Localization". Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> Text Localization

Linking this information and making it available through a search engine, would greatly

enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows:

imagine a direct query that provides a researcher with all the papers that report an exact

same technique for the exact same task. This could even be provided to the user in

table mark-up and could clearly show the discrepancies between similar research. Many

computer science experiments are highly reproducible, but will never be questioned since

such contradictory information is never found. This task does not necessarily question

the professionality and integrity of researchers, but could definitely give us great insights
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Figure 5.1: Tab2Know: System Overview

step to create a large-scale KB of scientific knowledge.

5.1 Introduction

Often, scientific advancement requires an extensive analysis of pre-existing techniques

or a careful comparison with previous experimental results. For instance, it is common

for researchers in Artificial Intelligence (AI) to ask questions like “Which are the

most popular datasets used for graph embeddings?” or “What is the F1 of BERT

on TACRED?". Finding the answers obliges the researchers to spend much time in

perusing existing literature, looking for experimental results, techniques, or other

valuable resources.

The answers to such questions can be frequently found in tabular form, especially

the ones that describe the output of experiments. Unfortunately, tables in papers

are made for human consumption; thus, their layout can be irregular or contain

118



Chapter 5. Building a KB from Tables in Scientific Papers

specific abbreviations that are hard to disambiguate automatically. It would be very

useful if their content were copied into a clean Knowledge Base (KB) where tables

are disambiguated and connected using a single standardized vocabulary. This KB

could assist the users in finding those answers without accessing the papers or could

be used for many other purposes, like categorizing papers, finding inconsistencies or

plagiarized content.

To build such a KB, we present Tab2Know, an end-to-end system designed to

interpret the tables in scientific papers. The main challenge tackled by Tab2Know

lies in the interpretation of the table, which is a necessary step to build a KB. In

this context, the peculiarities of tables in scientific literature make our domain quite

different from previous work (e.g., [Bhagavatula et al., 2015, Ritze et al., 2015]), which

mainly focused on Web tables. First, the interpretation of Web tables benefits from

the existence of large, curated KBs (e.g., DBPedia [Auer et al., 2007]), which allows

the linking of many entities. In our case, there is no such KB. Second, a large number

of Web tables can be categorized as entity-attribute tables, i.e., tables where each row

describes one entity, and the columns represent attributes [Ritze et al., 2015, Zhang,

2017]. In our context, we observed that many tables are of different types, namely they

express n-ary relations, such as the results of experiments. For such tables, existing

techniques designed for entity-attribute tables cannot be reused.

With Tab2Know, we propose a pipeline for knowledge extraction that includes

both weakly supervised learning methods and logical reasoning. Tab2Know is designed

to 1) detect the type of the table; 2) disambiguate the types of columns, and 3)

link the entities between tables. The first operation is applied to distinguish, for

instance, tables that report experiments from tables that report examples. The second

operation recognizes the rows that contain the headers of the table and disambiguates

the columns, linking them to classes of an ontology. The third operation links entities

in different tables.

We implement the first two operations using statistical classifiers trained with

bag-of-words and context-based features. These classifiers have an accuracy that

largely depends on the quality and amount of training data. Unfortunately, labeling
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training data is increasingly the largest bottleneck as it often requires an expensive

manual effort and/or expertise that might not be readily available. To counter this

problem, we propose a weakly supervised method that relies on SPARQL queries and

Snorkel [Ratner et al., 2020]. The SPARQL queries are used to automatically retrieve

samples of a given class, type, etc., while Snorkel resolves potential conflicts in the

prediction with a sophisticated voting mechanism.

After the first two operations are completed, we transform the tables into an

RDF KB and apply reasoning with existentially quantified rules to identify and link

entities in different tables. Reasoning with existentially quantified rules is a well-known

technology for data integration and wrangling [Konstantinou et al., 2019]. For our

problem, we designed a set of rules that considers the types of columns and string

similarities to establish links using the sameAs property. Then, we used VLog [Carral

et al., 2019] to materialize the derivations and link the entities across the tables.

We evaluated our approach considering open access CS papers. In particular, we

evaluated the performance of our pipeline using gold standards and compared it to

another state-of-the-art method. We also applied our method to a larger corpus with

73k scientific tables. In these tables, we found 312k entities, which are linked to the

table structure and metadata in our large-scale KB.

We release the datasets, gold standards, and resulting KB as an open resource for

the research community at https://doi.org/10.5281/zenodo.3983012. The code,

ruleset, and instructions to replicate our experiments in this chapter are also publicly

available at https://github.com/karmaresearch/tab2know.

5.2 Background

Extracting knowledge from tables from PDF documents is a process that can be

divided into three main tasks: table extraction, table interpretation, and entity linking.

Below, we refer to the related work in Chapter 2 and how it relates to the research

described in this chapter.
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Table extraction The task of table extraction consists of detecting the parts of a

PDF/image which contain a table, and then recognizing the table’s structure so that

it can be correctly extracted.

When attempting to extract tables from PDFs or images, the first step is to detect

them inside the document. Existing methods can be categorized either as heuristic

(e.g., Oro and Ruffolo [2009], Clark and Divvala [2016]) or supervised (e.g., Pinto et al.

[2003]). Methods in the first category are typically unsupervised and apply heuristics

like the presence of captions, etc. Prominent systems in this category are Trex [Oro

and Ruffolo, 2009] and Tableseer [Liu et al., 2007]. In contrast, methods in the second

category train statistical models. Prominent methods are the ones by [Pinto et al.,

2003, Choudhury et al., 2015]. The system PDFFigures [Clark and Divvala, 2016] is a

recent approach based on heuristics with very high precision and recall (≥ 90%) on

the domain of scientific papers, and is used in Semantic Scholar [Ammar et al., 2018].

Therefore, this is the system we employed for table detection in this work.

Given as input the detected image-like representation of a table from the first

step, there are various systems that focus on subsequently recognizing the table’s

structure so that it can be correctly extracted. A popular system is Tabula1), which

recognizes the table’s structure using rules. More recently, some deep learning methods

based on Convolutional Neural Networks (CNN) [Schreiber et al., 2017], Conditional

Generative Adversarial Networks (CGAN) [Vine et al., 2019], and a combination of

a CNN, saliency and graphical models [Kavasidis et al., 2018] have been evaluated.

The performance of these methods is good (F1 ≥ 0.95), but not much different from

Tabula, which returns a F1 between 0.86 and 0.96 and has the advantage that is

unsupervised.

Because the main difficulty in this space is the diversity of table layouts across

domains, subsequent work has emphasized the creation of, and evaluation on, large

corpora gold-standard datasets from diverse sources [Li et al., 2019, Zhong et al., 2020].

However, this challenge is not yet solved robustly for down-stream applications such

as ours. In our current research, we have therefore chosen to adapt the commonly

1https://tabula.technology/
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used, domain-invariant Tabula system for performing this step.

Table interpretation The goal of table interpretation consists of linking the content

of the table to a KB so that new knowledge can be extracted from the table. We

provide an extensive overview of techniques in Chapter 2, section 2.3. However, these

techniques are mostly designed for Web tables and rely on a rich KB like DBPedia [Auer

et al., 2007], which we do not have.

The only work that has focused on the interpretation of tables from scientific

literature is [Yu et al., 2020]. The authors describe an approach to automatically

extract experimental data from tables based on ensemble learning. Although we view

this work as the most relevant to our problem, there are several important differences

between our work and theirs. First, our approach employs a different set of technologies

and performs entity linking, which is not considered in [Yu et al., 2020]. Then, our

approach is more general. In fact, [Yu et al., 2020] focuses only on the extraction of

tuples (method, dataset,metric, score, source) while ours extracts a larger variety of

knowledge. Finally, our approach yields a better accuracy (see Section 5.6).

Entity Linking See Chapter 2, Section 2.4.2 for an overview of related work on entity

linking. Our work differs from these because they either focus on highly structured

table sets or require the existence of KBs (which we do not have). Moreover, another

important difference is that we take a declarative approach with rules. Rules are

useful because they can be easily debugged/extended directly by domain experts, and

they can be integrated with ontological reasoning.

Other related works We mention, as further related work, the systems by [Das

Sarma et al., 2012] and TableNet [Fetahu et al., 2019] which focus on searching for

tables related to a given query. Other, less relevant works focus on extracting and

searching for figures on papers [Siegel et al., 2016]. These works complement our

approach and can further assist the user to find relevant knowledge in papers.
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5.3 Overview

Our goal is to construct a clean and large KB from the content of tables in scientific

papers stored as PDFs. To do so, we need to address two main challenges: first, we

must resolve the ambiguities that might arise during the noisy extraction process and

reduce the error rate as much as possible. Second, we must counter the problem that

we lack both: 1) a pre-existing KB that can guide the extraction process and 2) a

large amount of training data. We must, in other words, find a way to build a KB

from scratch.

Our proposal is a pipeline with three steps, as shown in Figure 5.1:

• Preprocessing: Table Extraction. The system receives as input an image-

like representation of a table, recognizes its structure, and returns its content as

a CSV file. For this step, we use external tools. We provide more details below;

• Task 1: Table Interpretation. The system processes the CSV to recognize

the headers and the type of the table. Then, it disambiguates the columns by

mapping them to ontological classes. We describe this task in Section 5.4;

• Task 2: Entity Linking. Finally, the system performs logical-based reasoning

to link the entities across tables. We describe this task in Section 5.5.

While in principle our method can be applied to scientific papers in any domain,

we restrict our analysis to papers in Computer Science, which is our area of expertise.

In particular, we consider Open Access papers and have been published in top-tier

venues in subfields like AI, semantic web, databases, etc.

Before we describe the components, we describe two additional assets that we use

for different purposes. The first one is an ontology constructed annotating a sample

of random tables. A first version of this ontology contained 44 classes organized in

a hierarchy with a maximum depth of 6. After further annotations, we decided to

simplify it to a set of of 27 classes (depth 3) for which we had substantial evidence in our

corpus. The final ontology has 4 root classes: Example, Input, Observation, and

Other. These classes define general table types. Then, the subclasses describe column
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owl:Thing
:Example
:Input

:Category
:Dataset
:ExperimentalVariable

:Feature
:InputSize

:Method
:Task

:Observation
:Maximum
:Metric

:Accuracy
:AreaUnderCurve
:BLEU
:Correlation
:Count
:Error
:Mean
:Median
:Precision
:Recall
:F-score
:StandardDeviation

:Runtime
:Other

:SymbolDescription

Figure 5.2: Taxonomy of our column types.

types, e.g., Dataset, Runtime, or Mean. This taxonomy is shown in Figure 5.2.

The ontology is serialized in OWL using WebProtégé [Horridge et al., 2019] and is

publicly available as resource.

The second asset is an external KB that contains metadata of the papers, namely

Semantic Scholar [Ammar et al., 2018]. We access it using the provided APIs to

retrieve the list of authors, the venue, and other contextual data.

Preprocessing: Table Extraction Our input consists of a collection of papers in

PDF format. The first operation consists of launching PDFFigures [Clark and Divvala,

2016] to extract from the PDFs the coordinates of tables and related captions. We use
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the coordinates to extract an image-like representation of the tables, see for instance

the table reported in Figure 5.1. Then, we invoke Tabula, which is a tool also used

in similar prior works [Yu et al., 2020], to recognize the structure of the tables using

their coordinates and to translate them into CSV files.

After the images are converted, we perform a naïve conversion of the tables into

RDF triples. We assign a URI to every table, column, row, and cell and link every

cell, row, and column to the respective table with positional coordinates.

Example 5.3.1. Consider the table in Figure 5.1. We report below some triples that

are generated while dumping its content into RDF.

PREFIX : http://xzy/tab2know

:Table1 :hasRow :Table1-r1 :Table1 :hasCol :Table1-c1

:Table1-r1 rdf:type :Row :Table1-c1 rdf:type :Column

:Table1-r1 :rowIndex 1^^〈xsd:int〉 :Table1-c1 :colIndex 1^^〈xsd:int〉

:Table1-r1c1 :cellOf :Table1 :Table1-r1c1 rdf:type :Cell

:Table1-r1c1 :rowIdx 1^^〈xsd:int〉 :Table1-r1c1 :colIdx 1^^〈xsd:int〉

:Table1-r1c1 rdf:value "Method name" :Table1-r2c1 rdf:value "USTB_TexStar"

...

As we can see from the triples in Example 5.3.1, the KB generated at this stage is

a direct conversion of the tabular structure into triples. Despite its simplicity, however,

such a KB is already useful because it can be used to query the n-ary relations

expressed in the tables in combination with the papers’ metadata. For instance, we

can write a SPARQL query to retrieve all the tables created by one author with a

caption containing the word “results”, or to retrieve the tables containing “F1” and

which appear as proceedings of a certain venue.

The main problem at this stage is that we can only query using string similarities,

which severely reduces the recall. For instance, a query could miss a column titled

Prec. if it searches for Precision. The next operation, described below, attempts

to disambiguate the tables to create a KB that is more robust against the syntactic

diversity of the surface form of their content.
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5.4 Task 1: Table Interpretation

Tab2Know performs three main operations to interpret the tables. First, it identifies

the rows with the table’s header (Section 5.4.2). Then, it detects the type of the table

(Section 5.4.3). Finally, it maps each column to an ontological class (Section 5.4.4).

First, we describe the procedure to obtain training data.

5.4.1 Training Data Generation

Statistical models are ideal for implementing a table interpretation that is robust

against noise. However, their accuracy depends on high-quality training data, which

we do not have (and it is expensive to obtain such data with human annotators).

We counter this problem following the paradigm of weak supervision. The idea is

to employ many annotators, which are much cheaper than a human expert but also

much noisier. These annotators can deliver a large volume of labeled data, but the

labels might be incorrect or conflicting. To resolve these problems, we can either rely

on procedures like majority voting or train a dedicated model to computed the most

likely correct label. In the second case, we can use Snorkel, one of the most popular

models for this purpose [Ratner et al., 2020].

Snorkel’s goal is to facilitate the learning of a model θ that, given a data point

x ∈ X , predicts its label y ∈ Y . Instead of training θ by fitting it to a set of pre-labeled

data points, as it would happen in a traditional supervised approach, Snorkel trains

an additional generative model with unlabeled data and uses pre-labeled data only for

validation and testing. For these two tasks, the amount of pre-labeled data can be

much smaller, and thus cheaper to obtain. Then, the generative model can be used to

train θ.

Snorkel introduces the term labeling function to indicate a data annotator with

possibly low accuracy. A labeling function λ : X → Y ∪ {∅} can encode a heuristic

or be a simple predictor. It receives a data point x in input and either returns a

label in Y or abstains, i.e., returns ∅. Given m unlabeled data points and n labeling

functions, Snorkel applies the labeling functions to the data points and computes a
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matrix M ∈ (Y ∪ {∅})m×n.

Then, Snorkel processes M to compute, for each xi where i ∈ {1, . . . ,m}, a proba-

bilistic training label ỹi. The processing consists of creating a generative model using

a matrix completion-style algorithm over the covariance matrix of the labels [Ratner

et al., 2019]. Then, this model can be used to generate labeled data for training θ.

In this work, we considered three families of models, Naïve Bayes (NB), Support

Vector Machine (SVM), and Logistic Regression (LR) [Bishop, 2006], to implement

θ. We have also experimented with deep learning models, but we did not obtain

improvements because such models are more prone to overfitting if training data is

scarce or contains many regularities, which is a well-known feature of weak supervision

labels [Wyatte, 2019].

The effectiveness of Snorkel largely depends on the number and quality of the

labeling functions. In our context, we implemented them using SPARQL queries,

which are supposed to be entered by a (human) user. SPARQL queries are ideal

because they can assign labels to many data points at once. For each query Q, we

create a labeling function that receives in input a column/table x and returns an

assigned class label (e.g., a table type, or the class of a column) if x is among the

answers of Q. Otherwise, the function abstains.

Example 5.4.1. We show below an example of a SPARQL query that labels columns

with the class :F-score if they have a header cell with value “f1” and contain any cell

with a numeric type.
select distinct ?column ?coltype where {

?table :column ?column ; :cell ?cell .

?column :hasTitle "f1" .

?cell rdf:type xsd:decimal .

bind( :F-score as ?coltype )

}

Clearly, this query is not a good predictor if taken alone, but if we combine its

output with the ones of many other functions, then the resulting predictive power is

likely to be superior. This is the key observation used by Snorkel.
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In our pipeline, we execute all the user-provided SPARQL queries and then use

their outputs to build the matrix M for a large number of data points. Next, we

train the final discriminative model θ. We compute two different θ: One to generate

training data for predicting the tables’ types (Section 5.4.3) while the other is for

predicting the columns’ types (Section 5.4.4).

5.4.2 Table Header Detection

First, we identify the rows that define the headers. To this end, we can either always

select the first row as header or employ more sophisticated methods to recognize

multi-row headers, like [Fang et al., 2012]. We observed that a simplified unsupervised

version of [Fang et al., 2012] yields a good accuracy on our dataset. We describe it

below.

Our procedure exploits the observation that header rows differ significantly from

the rest of the table with respect to character-based statistics. Hence, we categorize

characters either as numeric, uppercase, lowercase, space, non-alphanumeric, or other.

Then, for each column, we count how many characters of each class (e.g., numeric)

appear in its cell. We compute the average count per class across the column and use

these values to determine the standard deviation for each cell. The outlier score of a

row r is determined as the average of the standard deviations of all classes of its cells.

If the outlier score or r is greater than τ (default value is 1, set after cross-validation),

then r is marked as header.

5.4.3 Table Type Detection

In scientific papers, tables are used for various reasons. We classified them in the

classes Observation, Input, Example, and Other (See Figure 5.3 for examples).

Knowing the class of a table is useful for reducing the search space when the user

is interested in some specific content (e.g., The F1 score is typically not mentioned in

tables of type Example). Moreover, we can also use this information as a feature for

the column disambiguation.
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Type Example Words
Offensive disgusting, lthy, nasty,

rude, horrible, terrible, aw-
ful, worst, idiotic, stupid,
dumb, ugly, etc.

Non-offensive help, love, respect, believe,
congrats, hi, like, great,
fun, nice, neat, happy,
good, best, etc.

l1-l2 #S #l1-W #l2-W #l1-V #l2-V

en-de 1.9M 55M 52M 40k 50k
en-fr 2.0M 50M 51M 40k 50k
en-es 1.9M 49M 51M 40k 50k

Models Rerank size Beam size GMV Latency
miDNN 50 - 2.91% 9%
miRNN 50 5 5.03% 58%

miRNN+att. 50 5 5.82% 401%

αc DP concentration parameter for each c ∈ V
P0(e|c) CFG base distribution
x Set of non-terminal nodes in the treebank
S Set of sampling sites (one for each x ∈ x)
S A block of sampling sites, where S ⊆ S
b = {bs}s∈S Binary variables to be sampled (bs = 1 →

frontier node)
z Latent state of the segmented treebank
m Number of sites s ∈ S s.t. bS = 1
n = {nc,e} Sufficient statistics of z
∆nS:m Change in counts by setting m sites in S

(a) Input (b) Observation

(c) Example (d) Other

Figure 5.3: Examples of tables of each category

We predict the table type with a statistical classifier. As features for the classifier,

we selected bags-of-ngrams of lengths 1 to 3 that occurred more than once, weighted by

their TF-IDF score. Tables often contain abbreviations and domain-specific symbols

that address an audience of experts. These provide strong hints for determining the

type of the table; thus we consider the ngram in the content of the cells and the table

caption. We also included other numerical features. In particular, we use the fraction

of numeric cells in the table and the minimum, maximum, median, mean and standard

deviation of numerical columns. This resulted in a total of 5804 features.

To train the models, we first ask the users to specify some SPARQL queries

which will be used by Snorkel to create a large volume of training data. Then, we

experimented with three well-known types of classifiers: NB, SVM, and LR. Eventually,

we selected LR because it returned the best performance on the noisiest dataset.

5.4.4 Column Type Detection

Finally, the interpretation procedure attempts at linking the columns to one of the

available classes in our ontology. The ontology includes popular classes that we

identified while annotating a sample (e.g., Dataset, Runtime,. . . ), while infrequent

classes with very few columns are mapped to the class Other. In general, we assume

that a column is untyped if it is mapped to Other.

129



5.5. Task 2: Entity Linking

For this task, we also used bag-of-ngram features of lengths 1 to 3, extracted from

the table caption, the column header cells, the header cells of the other columns, and

the column body. We restricted the set of ngrams to only the top 1000 most frequent

per extraction source. Additionally, we added features about the numerical columns,

identical to those in Section 5.4.3. This resulted in a total of 3076 features.

Similarly as before, we first rely on user-provided SPARQL queries to generate

training data. Then, we considered NB, SVM, and LR as classifiers. Once the models

for the table and column types are trained, we use them to predict the types of every

table and column in our corpus. Finally, we use the predicted class to annotate the

table/column in the KB with a semantic type.

5.5 Task 2: Entity Linking

Rationale Predicting the types of tables and columns is useful to map the table

schema into a meaningful n-ary relation. The last operation in our pipeline consists

of associating cells to entities so that we can populate the n-ary relations with new

instances.

We start by assuming that every non-numerical cell contains an entity mention,

which implies the existence of one entity. This assumption is not unrealistic. Indeed,

if we look at the table in Figure 5.1, then we see that every non-numerical cell that is

not in the table’s header refers to an entity (e.g., the cell “USTB_TextStar” refers to

an algorithm to detect text inside images).

In practice, it is likely that some entities are mentioned multiple times. This

consideration motivates us to discover whether two entity mentions (possibly on

different tables) refer to the same entity. When we do so, then we gain more knowledge

about the entity and reduce the number of entities in the target KB. We call this task

entity linking because we are linking, with the sameAs property, equivalent entities

across tables.

With this goal in mind, we start by assuming that every entity has the content of

the corresponding cell as label. For instance, the entity mentioned in the cell with
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“USTB_TextStar” has “USTB_TextStar” as label. Using the labels to determine

equality can be surprisingly effective in practice, but it is not an operation without

risks. In fact, there are cases where different entities have the same label, or the same

entity has multiple labels. These cases call for a more sophisticated procedure to

discover equalities.

Reasoning Reasoning with existentially quantified rules is an ideal tool to establish

non-trivial equalities between entities since it was already previously used for data

integration problems [Fagin et al., 2003, Geerts et al., 2014]. For our purposes, we

are interested in applying two types of rules: Tuple Generating Dependencies (TGDs)

and Equality Generating Dependencies (EGDs). We describe those below.

Consider a vocabulary consisting of infinite and mutually disjoint sets of properties

P , constants C, null values N , and variables V . A term is either a constant, a variable,

or a null value. An atom is an expression of the form p(~x) where p ∈ P , ~x is a tuple

of terms of length equal to the arity of p, which is fixed. A fact is an atom without

variables. A TGD is a rule of the form:

∀~x, ~y.(B → ∃~z.H) (5.1)

where B is a conjunction of atoms over ~x and ~y while H is a conjunctions of atoms

over ~y and ~z. Let x, y ∈ ~x. A EGD is a rule of the form:

∀~x.(B → x ≈ y) (5.2)

Intuitively, TGDs are used to infer new facts from an existing set of facts (i.e., the

database). Their execution consists of finding in the database suitable replacements

for the variables in ~x and ~y that render B a set of facts in the database. Then, these

replacements and mappings from ~z to fresh values in N are used to map H into a set

of facts, which is the set of inferred facts.

EGDs are used to establish the equivalence between terms. Their execution is

similar to the one of TGDs, with the difference that whenever they infer that a ≈ b,
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where a and b are terms and a < b according to a predefined ordering, then every

occurrence of b in the database is replaced with a.

The chase [Fagin et al., 2003] is a class of forward-chaining procedures that

exhaustively apply TGDs and EGDs to infer new knowledge with the rules. A formal

definition of various chase procedures is available at [Benedikt et al., 2017]. In this

work, we apply the restricted chase, one of the most popular variants. It is known

that sometimes the chase may not terminate, but this is not our case since we use an

acyclic ruleset [Fagin et al., 2003].

We first map the content of the KB extracted from the tables into a set of

facts. For example, the first two RDF triples in Example 5.3.1 map to the facts

hasRow(Table1,Table1-r1) and hasCol(Table1,Table1-c1) respectively.

Then, we use the two TGDs

type(X, Column)→ ∃Y.colEntity(X, Y ) (r1)

type(X, Cell)→ ∃Y.cellEntity(X, Y ) (r2)

to introduce fresh entities for every column and cell in the tables. The predicates

colEntity and cellEntity link entities (Y ) to the columns and cells respectively. Note

that we use null values to represent entities, thus we are simply stating their existence

with some placeholders. To reason and discover whether two different entities are

equivalent, we employ EGDs. In particular, we use five EGDs, reported below:

ceNoTypLabel(X,L), ceNoTypLabel(Y, L)→ X ≈ Y (r3)

eNoTypLabel(X,C, L), eNoTypLabel(Y,C, L)→ X ≈ Y (r4)

eTableLabel(X,T, L), eTableLabel(Y, T, L)→ X ≈ Y (r5)

eTypLabel(X,S, L), eTypLabel(Y, S,M), STR_EQ(L,M)→ X ≈ Y (r6)

eAuthLabel(X,A,L), eAuthLabel(Y,A,M), STR_EQ(L,M)→ X ≈ Y (r7)

where ceNoTypLabel, eNoTypLabel, eTableLabel, eTypLabel, and eAuthLabel are

auxiliary predicates that we introduce for improving the readability. We describe their
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intended meaning as follows. The fact ceNoTypeLabel(X,L) is true if colEntity(Y,X)

is true and Y is an untyped column with header value L; eNoTypeLabel(X,C, L) is

true if X is an entity with a label L that appears in a cell inside an untyped column

associated to entity C; eTableLabel(X,T, L) is true if entity X with label L appears

in table T ; eTypeLabel(X,S, L) is true if entity X with label L appears in a column

with type S; eAuthLabel(X,A,L) is true if entity X with label L appears in a table

authored by author A.

The rationale behind each EGD is the following:

• Rule r3 : This rule is introduced to disambiguate untyped columns. Since we

were unable to discover the columns’ types and assigned them to the class Other,

we use the value of the header to determine whether they contain the same type

of entities. Thus, the rule will infer that their associated entities are equal if

they share the same header.

• Rule r4 : This rule infers that two entities are equal if they appear in the same

group of columns (created by r3), and they share the same label.

• Rule r5 : This rule encodes a simple heuristics, namely that if two entities with

the same label appear in the same table, then they should be equal, irrespective

of the type of columns where they appear.

• Rule r6 : This rule disambiguates entities in columns of the same type. Here,

we no longer consider the header of the column (as done by r3 and r4) but

compare the entities’ labels. After experimenting with approximate string

similarity measures, like the Levenshtein distance, we decided to use a case

insensitive string equality (STR_EQ) to reduce the number of false positives.

Case-insensitive similarity is more expensive than an exact string match because

it requires dictionary lookups. We use it here and not in r3, r4, and r5 because

the comparisons are done only between entities of the same type.

• Rule r7 : This rule implements another heuristic which takes into account the

authors of the paper. It assumes that two entities are equal if they appear in
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two tables authored by the same author (we used the IDs provided by Semantic

Scholar to disambiguate authors) and have the same label.

Once the reasoning has terminated, we introduce a new entity for each different

null value and add RDF triples that link them to the corresponding cells and columns.

Notice that the list of presented rules is not meant to be exhaustive. The ones that

we describe show how we can exploit the predictions computed in the previous step

(r6) and external knowledge (r7) relying on string similarity when no extra knowledge

is available. We believe that additional EGDs, possibly designed to capture some

specific cases, can further improve the performance.

5.6 Evaluation

Inputs We considered two datasets: A corpus of tables that we manually constructed,

and the dataset by [Yu et al., 2020], which is called Tablepedia.

Our corpus of tables contains 142,966 open-access PDFs distributed by Semantic

Scholar. These papers appear in the proceedings of top venues in CS: AAAI, ACL,

Artif. Intell., ArXiv, CIKM, COLING, CoNLL, EACL, ECAI, EMNLP, HLT-NAACL,

IJCAI, NeurIPS, NIPS, (P)VLDB, and WWW. Notably, we excluded papers from

non-open-access publishers Elsevier, IEEE, and ACM. From these papers, we extracted

73,236 tables with PDFFigures and Tabula. These tables have 6.23 rows on average

(SD = 6.58), and they have 7.11 columns (SD = 6.27). We converted the tables

into RDF, resulting in a KB with 23M triples. We used Blazegraph to execute the

SPARQL queries. After adding the table types and column types, we loaded the KB

into VLog [Carral et al., 2019] to perform rule-based reasoning.

Tablepedia contains 451 tables, which have the columns annotated only with

three classes: Method, Dataset, and Metric. To use this dataset in our pipeline,

we created a graph representation of the tables without the annotations. Then, we

translate the 15 seed concepts that are used in [Yu et al., 2020] to create the tables

into labelling queries, so that we could apply Snorkel using both datasets. In contrast

to Tablepedia, our annotated dataset maps to a much larger number of classes. Notice
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that the most frequent column types in our dataset (Observation, Accuracy, and

Count), do not occur in Tablepedia.

Training data To create the training data for weak supervision, two human annota-

tors (one PhD and one bachelor CS student) wrote SPARQL queries for labeling with

the aid of a web interface designed for this purpose. The annotators examined the

results of these queries on a sample of 400 tables, ensuring that the queries represented

heuristics that covered a reasonable amount of the data. The quality of the SPARQL

queries is fundamental to produce a good training dataset, and hence return good

predictions. It is crucial that the queries have large coverage to avoid introducing a

bias and to increase the training data size. For instance, if the queries label only a few

tables, then the model will not receive enough evidence. To this end, we encouraged

them to write queries which also matched a large number of items on the entire set of

tables, and that did not excessively overlap. This resulted in 39 queries for labeling

98,570 tables with the corresponding type and 55 queries for labeling 165,302 columns.

Gold standards To test the performance, the same human annotators as before

manually annotated 400 random tables. The tables in this sample have, on average,

9.92 rows (SD 7.28) and 5.07 columns (SD 3.20). These tables were annotated with

the number of header rows, and table and column types. This process resulted in 321

table type and 873 column type annotations (excluding Other). Most tables were

annotated with the Observation class (258), followed by Input (50); the smallest

class was Example (13). The human annotators have annotated the table and column

types looking at the images of the tables, the table captions, and possibly the full paper

in case it was still not clear. The annotators have annotated the tables independently

and resolved the conflicts together whenever they disagreed. After the first round of

annotation using the first version of the ontology (44 classes), we marked as infrequent

all classes with fewer than 10 annotations. These classes were removed from the

ontology and the annotations were redirected to Other. For the Tablepedia dataset,

we used the annotations provided by the original authors.
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Method Accuracy
1st Row 0.71
Ours 0.76

Table 5.1: Accuracy of header detection methods.

Table Type Model Precision Recall F1 AUC
SVM 0.71 0.79 0.74 0.86
LR 0.72 0.79 0.74 0.84
NB 0.80 0.82 0.79 0.91

Table 5.2: Performance of semi-supervised trained models on table type prediction of
our own gold standard with respect to different metrics.

We highlight two aspects of our gold standard that have a direct impact on the

evaluation. First, in contrast to [Yu et al., 2020], we decided not to filter out tables

that were incorrectly extracted by Tabula. This makes our corpus more challenging

because it might contain errors due to incorrect parsing. Second, our choice of merging

infrequent column types into the type Other ensures that for each type there is always

some evidence, but it has the downside that some classes in the long tail are ignored.

Interpreting such types is an additional challenge that deserves a thorough study in

future work.

5.6.1 Table Interpretation

Table 5.1 reports the accuracy of our header detection heuristic compared to the

baseline that consists of always selecting the 1st row. We observe that our technique

has superior performance, although it still makes some mistakes.

In Table 5.2, we report the performance of our table type detection models on our

gold standard. In general, we observe that all three models return reasonably high

performance. Naïve Bayes (NB) outperformed the others, especially in terms of F1

and AUC. Thus, we decided to select this as the default one for this task.

In Table 5.3, we report the classifiers’ performance for the column types on our

gold standard, while Table 5.4 reports the same for Tablepedia. In both cases, we

see that LR performs best, likely due to the combined importance of textual and
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Model Precision Recall F1 AUC
NB 0.52 0.48 0.47 0.87
SVM 0.58 0.56 0.53 0.83
LR 0.58 0.56 0.53 0.85

Table 5.3: Performance of semi-supervised trained models on column property predic-
tion of our own gold standard with respect to different metrics.

Column Property Model Precision Recall F1 AUC
Yu et al. [Yu et al., 2020] 0.82 0.81 0.81 0.90
NB 0.84 0.82 0.81 0.96
SVM 0.90 0.89 0.89 0.97
LR 0.92 0.91 0.91 0.98

Table 5.4: Performance of semi-supervised trained models on column property predic-
tion of the Tablepedia data with respect to different metrics.

numeric features for this task. Additionally, we observe that our model significantly

outperforms the model of [Yu et al., 2020] on their dataset. If we compare the scores

between the two datasets, then we see that they are significantly lower with our dataset.

The reason is two-fold: First, the authors of Tablepedia have manually removed much

noise from the extracted tables while no pre-processing took place on our dataset.

Second, our dataset contains many more classes than Tablepedia, which makes it more

challenging to predict.

Finally, we studied the added value of using Snorkel and compared it with a simpler

majority voting (MV), i.e., labeling a data point using the most frequently predicted

class. In Table 5.5, we report both the accuracy obtained with MV and with Snorkel

on different tasks. While Snorkel outperforms MV for the table type detection on

our corpus and column type detection in Tablepedia, MV is better when detecting

the column types of our corpus. This is disappointing, but can be explained. In

Task MV Snorkel
Table Types (Our corpus) 0.50 0.71
Column Types (Our corpus) 0.56 0.49
Column Types (Tablepedia) 0.39 0.65

Table 5.5: Accuracy of label query aggregation methods (Snorkel and majority voting
(MV)) on different tasks.
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Figure 5.4: Ablation study. The bar marked with ri reports the number of entities
when only EGD ri is included in the rule set
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Figure 5.5: Examples of good and bad entities labels, with their number of linked
occurrences

the column type detection case, our labeling functions (i.e., SPARQL queries) have

frequently abstained. Consequently, the labling matrix M has a low label density,

and whenever this occurs, Snorkel is unable to compute optimal weights that diverge

from MV [Ratner et al., 2020]. The solution to this shortcoming of our approach is to

solicit additional labeling functions, in order to increase the coverage of annotations.

However, to support users in effectively writing such functions, it is neccesary to

provide them with adequate information about which items are insufficiently labeled.

This requires a modification of the user interface and a procedure to identify such

items with sufficient diversity, which is an interesting issue for future work to explore.

138



Chapter 5. Building a KB from Tables in Scientific Papers

5.6.2 Entity Linking

Figure 5.4 reports the number of entities before and after the execution of the EGD

rules. The left side compares the number of entities that refer to columns before and

after r3 was executed. As we can see, r3 merged many entities, and this reduced the

number of distinct entities of 65%. The right side shows the decrease of entities that

refer to cells after the execution of rules r4, . . . , r7. Here, the bar titled ri reports the

number of entities if only ri is executed while the right-most column indicates the

number of entities when all rules are included. We observe that every EGD contributes

to merge some entities, but the best results are obtained when all EGDs are activated:

here, the EGDs merged about 55% of the entities.

To evaluate the quality of entity links, we manually evaluated a sample of 100

merged entities. For each sampled entity, we first determined whether the entity was a

meaningful one. From this analysis, we discovered that 65% of the entities are correct

while the remaining have either nonsensical labels or some text resulted from errors of

Tabula. In Figure 5.5, we report examples of good and bad entities with their number

of links.

Then, we looked at the cells which referred to the entity, which were 541 in total.

Since the rules could make a mistake and link two cells to the same entity although

they meant different ones, we evaluated, for each entity, the precision of its links.

Given the set of n cells that link to the same entity, the precision is computed by

taking the cardinality of the largest subset of cells that refer to the same concept and

divide it by n. For instance, consider an entity X with label Y which is linked to

n = 4 cells. Three of these cells contain the text Y but refer to a dataset while one

cell contains Y but refers to something else. In this case, the precision for X is 3
4
. In

our sample, the average precision over the meaningful entities was about 97%, which

is a relatively high value. This indicates that reasoning produced an accurate entity

linking.
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5.7 Conclusion

We presented Tab2Know, an end-to-end system for building a KB from the knowledge

in scientific tables. One distinctive feature of Tab2Know is the usage of SPARQL

queries for weak supervision to counter the lack of training data. Another distinctive

feature is the usage of existentially quantified rules to link the entities without the

help of a pre-existing KB.

Our pipeline effectively combines statistical-based classification and logical reason-

ing, exploiting SPARQL and remote KBs like Semantic Scholar. Therefore, we believe

that ours is an excellent example of how semantic web technologies, statistical- and

logic-based AI can be used side-by-side.

Future work Although our results are encouraging, and the current KB is already

able to answer some non-trivial queries, future work is required to improve the

performance. First, a more accurate table extraction procedure is needed to improve

the accuracy of table interpretation and entity linking. Moreover, our current ontology

links classes only via v. It is interesting to study whether new relations can lead

to better extractions. For instance, specifying the range of some classes could be

used to exclude mappings to columns with incompatible values. Finally, a natural

continuation of our work is to further research whether additional rules can return a

better entity linking. In particular, we believe that rules that take into account the

context of the table or co-authorship networks will be particularly useful.

To conclude, we believe that Tab2Know represents one more step that brings us

closer to solve the problem of constructing an extensive and accurate KB of scientific

knowledge. Such a KB is a useful asset for assisting the researchers, and it can play a

crucial role in turning the vision of open science into a reality.
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CHAPTER 6

A Platform for Web Table Information Extraction

In this chapter, we describe our work on a software library for supporting the design

and analysis of table integration pipelines.

To extract knowledge from web tables, it is often useful to create data cleaning

and semantic matching pipelines which leverage patterns from large table corpora.

However, current approaches typically focus on only one part of the pipeline, and

are hard to debug at the system level. To support research into the entire process of

knowledge extraction from tables, we argue that it is necessary to move beyond solving

subtasks, and evaluate pipelines on real-world data. We present Takco 1 (TAbles for

Knowledge base COmpletion), an open-source platform designed for extracting novel

facts from tables that can be added to Knowledge Bases such as Wikidata. It has

a modular design that allows for analysis of every step of the pipeline, and can be

flexibly used for both explorative work on a single laptop as well as large-scale work on

a compute cluster. Additionally, it allows for the fine-grained analysis of the novelty

of facts extracted from benchmark datasets and large-scale corpora. We describe the

challenges raised by Takco, present preliminary analyses, and discuss its practical

1https://takco.readthedocs.io/
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usage.

6.1 Introduction

Semantically integrating tables on the web into Knowledge Bases is a long-standing

challenge in data management [Cafarella et al., 2018, Zhang and Balog, 2020]. However,

the variety of real-world web tables is so wide that current approaches cannot help

but make simplifying assumptions. Although such assumptions are necessary for

constraining the scope of research, it creates the risk of narrowing the attention of the

field to problems that are easy to define, while overlooking real-world phenomena that

may give rise to interesting research challenges. We believe that letting go of several

common assumptions about web tables will lead to productive new avenues of research,

and the potential of making larger real-world impact. At the same time, focusing

on a wider range of phenomena in practice creates the need for more emphasis on

building end-to-end approaches that combine multiple subtasks in a modular fashion.

However, creating and evaluating such systems takes much engineering effort, which

currently impedes research into the practical applicability of semantic table integration

approaches.

In this chapter, we therefore introduce Takco, a modular Python library for creating

and analyzing pipelines for web table data integration. The main goal of our effort is

to facilitate research and development into the extraction of novel facts from real-world

web tables. Therefore, we have developed several modules that can be combined in

a flexible way, according to the requirements of the project or the characteristics of

the data in the domain of interest. These modules are designed to address a number

of challenges we encountered when approaching this problem from the perspective of

modern data science.

First, data science workflows typically feature a development and a production

environment, where the development environment allows for the rapid prototyping of

candidate solutions, and the production environment scales to large datasets. Current

systems for knowledge extraction from web tables either require users to manually
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adapt large KBs and datasets to their own environment, or have difficulty scaling up to

realistic workloads. To support agile development, it is essential to instead allow users

to explore solutions incrementally, making use of ad-hoc data labeling, pre-trained

models and existing resources, while supporting the scalability of components in

production.

Second, most web tables require data cleaning and reshaping in order to be suitable

for semantic integration. Issues with data formatting, extraction artifacts, context,

and table structure impede the ability of current approaches to extract meaningful

information. However, such operations are heavily dependent on the data domain

and data modeling assumptions that underpin the KB of interest. Therefore, users

must have the ability to freely “patch” any pipeline with custom tailored modules

or annotated data for their specific use-case, and explore the influence of different

configurations on their extraction results.

Finally, there is an inherent trade-off in the table interpretation subtask between

novelty and confidence. As we have shown in Chapter 3, the more similar some dataset

is to information that is already known in the KB, the more confident most models

are about the semantics of that dataset. Datasets with the potential to add mostly

new facts are therefore harder to correctly interpret. This means that it is vital to

tune web table integration systems for generalization. However, at present there exist

no practical tools for assessing and analyzing how well current approaches generalize

to novel information.

6.2 Design of Takco

To address the challenges mentioned before, we decided to spend some engineering effort

to build a large-scale platform for table integration, called Takco. The development

has been driven by the following desiderata:

1. Generality. We did not want to develop yet another tool that caters only to the

needs of a single research lab, but a tool that can solve this problem in a wide

variety of scenarios;
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2. Scalability. Our system should be able to process a number of tables that is well

beyond the size of current benchmarks. Ideally, we would like to support very

large datasets, like all the tables contained in Wikipedia;

3. Integration with existing tools. The current data science landscape offers many

high quality frameworks, libraries, and tools to ease the processing of tabular

data. It makes no sense to reinvent the wheel. Thus, our goal was to develop a

platform that can be integrated as seamless as possible in a typical data science

pipeline;

4. Usability. Our system should be well-documented and should provide an imple-

mentation for basic operations. The goal is to avoid that new researchers spend

considerable time on developing so that more time is available for research.

We (briefly) describe below how such desiderata have been addressed in our system.

More information is available in the online documentation 2.

Generality In order to support table interpretation in a wide range of scenarios,

we decided to take a KB-agnostic approach. By leveraging the RDFlib3 API, our

table interpretation module can flexibly support a wide range of back-ends, including

SPARQL, Header-Dictionary Triples (HDT) [Fernández et al., 2013] and Trident4.

This interface is integrated with the support of different label index back-ends, such

as Elasticsearch5 and SQlite6 Full-Text Search.

We have also implemented an interface for flexibly supporting different schema

blocking and matching techniques, with which we provide wrappers for Locality-

Sensitive Hashing (LSH) [Gionis et al., 1999], Approximate Nearest Neighbors (ANN)

using word embeddings [Pennington et al., 2014, Johnson et al., 2019], and a number

of heuristics based on the table context, which optionally restrict the clustering based

on table metadata such as web-domain or wiki-category. These modules are easy to
2https://takco.readthedocs.io/
3https://rdflib.dev/
4https://github.com/karmaresearch/trident
5https://elastic.co/
6http://sqlite.org/
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configure, and provide a standard set of matcher aggregation functions and similarity

functions.

Scalability For processing large datasets of millions of web tables, we designed

Takco to be runnable on multi-core and multi-machine hardware, while keeping the

modules themselves hardware-agnostic, so that the same functions can be used for

exploration as well as large extraction applications. This was achieved by using the

Dask7 distributed computing library, which facilitates running Python code in parallel

on multiple CPUs in one or multiple machines. Additionally, the Takco modules were

designed to flexibly serialize and deserialize indexes, caches and intermediate results to

and from the Hadoop Distributed File System (HDFS) [Borthakur and Others, 2008],

which ensures that the data is physically close to where the computation happens.

Integration with existing tools Takco represents tables as Pandas8 Dataframes,

which is the most used Python library for data science. Consequently, it is easy for

users to write components for “patching” existing pipelines to adjust them to changing

requirements or new domains. By using the Dataframes API, industry-standard

packages for Machine Learning and Data Cleaning can also be interwoven with Takco

components. Additionally, we provide modules that load standard benchmark datasets

into a common format, accounting for differences in serialization, annotation structure

and table formats.

Usability By integrating with the Python data science ecosystem, Takco automati-

cally gains many advantages from a usability perspective. Existing tools for interactive

development and debugging, such as Jupyter notebooks9, facilitate the exploration of

data processing solutions in a tight loop of user feedback. We have also used Jupyter

for writing tutorials and example pipelines which are part of the documentation of

Takco. This makes it easier for researchers to get started with the library, and frees

up their time for doing experiments.
7dask.org/
8https://pandas.pydata.org/
9https://jupyter.org/
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Figure 6.1: Measuring the novelty of extracted facts

Additionally, Takco provides a user interface for interactively exploring the pa-

rameter space of table integration pipelines. The user interface can be run in two

ways: (1) as a browser bookmarklet that allows for the processing of web tables as

they appear on web pages, (2) as a stand-alone web service for the processing of

benchmark datasets. In both cases, users may step though the consecutive stages of a

pipeline, select parameter values and configurations, and analyze their effect on the

tables in question. For example, users may select a KB and inspect which information

expressed in the table is novel to that KB (Figure 6.2). We will expand upon how the

interface of Takco may be used by different users in the next section.

6.2.1 Target Users

The set of target users of Takco can be divided into three categories: System developers,

Knowledge base contributors, and Benchmark creators (note that the categories are

often overlapping).
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System Developers Takco enables a rapid exploration of configurations, and this

is useful for system developers to evaluate the impact of design decisions on extraction

quality and novelty. For instance, it is possible to observe how the performance varies

with different components in the extraction pipeline. Moreover, Takco shows which

tables are easy or hard (Figure 6.1) and the performance in different contexts, such as

tables of different sizes or with a different KB.

Knowledge Base Contributors One of the most obvious usage of Takco is to

extract novel facts to be added to a KB. Moreover, Takco is useful for KB contributors

because it shows how well a pipeline tuned for one dataset would perform on another

dataset (Figure 6.2), which gives a hint about the completeness of the extraction.

Benchmark Creators With the growing popularity of table interpretation, it is

fundamental to design better benchmark tools that can stress the systems in key areas.

To this end, we argue that benchmark creators need fine-grained control over the

knowledge gap in order to tune for desirable properties of competing systems, such as

extraction novelty. To support our position, Takco can be used to show characteristics

of existing or new benchmarks, which offer some insights into what makes novel facts

from tables easy or difficult to extract (Figure 6.3).

6.3 Usage of Takco

In this section, we describe the main features of Takco. In particular, we focus on its

ability to load multiple benchmark datasets and interface with various KBs. Then, we

describe how it can be used either as an (novelty) analysis tool or as a platform to aid

the development of new methods.

Datasets In recent years, several datasets have been created by multiple research

groups for benchmarking table interpretation systems. These datasets consist of

annotations of disambiguated entity links, ontology classes, and KB relations for

different columns. Often, the datasets were created with different assumptions. For
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Figure 6.2: Fine tuning interpretation on Wikipedia tables

example, sometimes the tables are assumed to express relations only involving a

certain key entity column, while in other datasets any pair of columns can express

a relation. The same holds for the annotations of classes, which in the first case is

available only for the key column. Additionally, these datasets were annotated using

different KBs. Such a diverse landscape makes a fair comparison between systems a

difficult task. In order to ease it, we have loaded into our tool the following datasets:

T2D-v2 [Ritze et al., 2015], WWT [Limaye et al., 2010], WikipediaGS [Efthymiou

et al., 2017], and the recent Tough Tables benchmark [Cutrona et al., 2020], which are

the most commonly used in the field. By providing a single interface to these datasets,

we were able to perform a more comprehensive study of the performance of multiple

state-of-the-art approaches.

KBs Some engines were designed to work only for a certain KB. For example,

T2KMatch makes use of a specifically tuned subset of DBpedia [Auer et al., 2007].

In contrast, Takco is fully KB-agnostic. To assess the ability of table interpretation

systems to extract novel knowledge, it is crucial to study the knowledge gap between
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Label

916 / 23822 = 3% att. novel

3192 / 23822 = 13% val. novel

Class

1365 / 21366 = 6% novel

Property

11523 / 49657 = 23% att. novel

30222 / 49657 = 60% val. novel

Novelty (Attribute / Value)

Label Class Property

Table Class A↕ V↕ A▼ A↕ V↕

37856682_0_681890705 AdministrativeRegion .5 .4 .78

53989675_0_869748247 Lake .66

4444204_0_9514267905 City .2 .11 .50 .30 .49

21329809_0_552600840 City .1 .6 .45 .26 .65

70404164_0_549819597 City .2 .10 .38 .26 .56

77632062_0_229289237 City .0 .10 .38 .27 .56

Figure 6.3: Analyzing the novelty of benchmark datasets

the KB and the table. To this end, we have loaded both the full and subsets of

DBpedia, YAGO, Freebase and Wikidata in order to determine the impact of varying

the KB and hence the knowledge gaps.

For DBpedia, we loaded the subset as used in T2KMatch and several past versions,

including the current “live" distribution. Because most KBs include entity references

to Wikipedia pages, we created a module that maps entity annotations from one KB

to another. This allows us to evaluate entity disambiguation with respect to Wikidata,

which is the largest KB but for which little annotated data exists.

6.3.1 Usage as an Analysis Tool

Our platform can be used to analyze the results of a generic extraction system. In

particular, it offers a fine-grained analysis of the novelty, since extracting novel facts

is one of the primary goals of our research. To perform this analysis, it is sufficient to

return the annotations produced by the extraction system in a specific format that

can be parsed by our tool.

As described above, gold-standard annotations and predictions for this task con-

sist of three types: rows to entities, columns to classes, and column pairs to re-

lations. Each of these annotation types result in fact extractions of entity labels,

149



6.3. Usage of Takco

class memberships, and relations respectively. For instance, imagine a table in

a dataset with two columns, “Cities” and “Capital of”, and one row with values

(“A’dam”,“NL”). Moreover, suppose that the dataset contains a gold row to entity

annotation which links the row to the KB entity Amsterdam, a column to class

annotation which links “Cities” to City, and an annotation of a column pair to a

relation which links “Capital of” to capitalOf. The first annotation can be used

to extract the fact 〈Amsterdam, hasLabel, “A’dam”〉, the second extracts the fact

〈Amsterdam, isA, City〉, and the third 〈Amsterdam, capitalOf, Netherlands〉 (assum-

ing that “NL” is also disambiguated to Netherlands).

Each of these facts can be novel or not. We make a distinction between two

types of novelty. For value novelty, we consider any value (label, class, or rela-

tion value) to be novel that does not match an existing value in the KB, where

the matching function can involve approximate comparisons of strings, numbers

and other datatypes. For attribute novelty, we consider any value to be novel

if the KB has no value at all for that entity and attribute. For instance, let

us consider the fact s = 〈Amsterdam, capitalOf, Netherlands〉 and let E = {x |

〈Amsterdam, capitalOf, x〉 ∈ KB}, i.e., E contains all the entities in the KB linked

to Amsterdam with capitalOf. In this case, with the value novelty, we say that s is

novel if no entity in E has a label that matches with “NL”. With the attribute novelty,

s is novel if E is empty.

Our tool aggregates the two types of novelty scores per table and dataset. For

entity links, the aggregated score is the percentage of cells that do not match the label

of the annotated entity in the KB. For classes, it is the percentage of entities that are

not assigned in the KB to the class annotated for that column. For other relation

annotations, it is the percentage of cells in the annotated column that contain a value

that does not match (or exist) for that (subject entity, relation) pair in the KB.

The aggregated scores are shown in an overview page that can be used to analyze

the various types of novelties. For instance, Figure 6.3 contains a screenshot of such a

page considering the annotations in the gold standard of the dataset T2D-v2. Note

that these scores can be computed either considering the annotations in the gold
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standard or the annotations produced by an extraction system. Visualizing the novelty

of the gold standard annotations is useful to determine how appropriate the benchmark

is for completing the KB. In contrast, analyzing the annotations of an extraction

system is useful to assess its ability to return new facts.

6.3.2 Usage as a Modular Platform

Takco can also be used as a platform that provides basic building blocks for developing

a new table interpretation technique. The building blocks consist of some common

operations that are typically performed during the extraction pipeline. The design of

Takco allows for the fine-grained analysis of the different components that make up a

KB completion pipeline. In particular, we have used it to develop our KB completion

methods of Chapters 3 and 4.

For example, one of such building blocks can be used to retrieve a set of entity

candidates for a given table cell based on string similarities. In this case, the choice of

the pool of labels in the KB has a large impact on the recall. Previous methods have

considered different sources of labels, such as anchor text of hyperlinks on Wikipedia.

To test the performance with different label sets, we loaded the labels from the KB

itself, from Wikipedia article titles, disambiguations and redirects, from anchor text of

Wikipedia hyperlinks, and anchor text from the Web. Furthermore, the way the label

index is queried is also influential since some good (or bad) candidates might be missed

(or included). We have implemented several querying methods (e.g., approximate or

exact string matching), and allow importing candidate sets from other systems, e.g.,

T2KMatch. This allows us to cleanly separate these dependencies in the pipeline, and

analyze the impact of single components. For instance, Figure 6.1 shows a screenshot

of the analysis tool that highlights which cell values in a table match values in the

KB, based on one particular label set, along with the novelty scores.

Our platform reports matching scores for every candidate prediction, along with

its novelty and correctness, along the entire integration pipeline. This shows when

and where the pipeline discards predictions that are correct but have low support due

to insufficient matches. Tracking this information is crucial to maximizing the amount
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Figure 6.4: Entity Linking performance on Tough Tables benchmark subsets, for
T2KMatch and two Takco baseline label search indexes.

of extracted novel knowledge.

6.4 Evaluation Results

In this section, we provide a brief evaluation of Takco, illustrating several of its

functions and their potential for supporting research into the integration of large

volumes of diverse web table data with KBs.

Entity Linking In Figure 6.4, we show an entity linking performance compari-

son of two baseline label index configurations from Takco with the performance of

T2KMatch [Ritze et al., 2015] on the recently introduced Tough Tables benchmark

[Cutrona et al., 2020]. This benchmark contains tables from various sources, including

artificially generated from DBpedia. The annotations are based on DBpedia version

2016-10. The tables are selected and created for the explicit purpose of identifying

strengths and weaknesses in table interpretation methods. This is achieved by com-

paring performance over different subsets of the benchmark dataset, which represent

different challenges for such systems, such as ambiguous or misspelled entity names.
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The Takco label search indexes that we used are Elasticsearch instances with

custom query functions that combine several matching scores. The index contains

one document for each entity, which contains the labels of all its property values, as

well as a set of weighted surface forms that are derived from hyperlink anchor text

frequencies on Wikipedia. For each row in the table, the entity relevance is calculated

by combining two matching scores: (1) the weighted score of surface form that best

matches the cell in the key column, and (2) the similarity between the non-key cells

and the entity’s property values. The two indexes we evaluated both function in the

same way, but one is based on the entities in the DBpedia subset of T2KMatch, while

the other is based on the 2020-10 version of DBpedia. Note that in contrast to our

work in Chapter 3, we only select the top-1 query result if present, and do not perform

any further ranking of candidates.

From these results, we can identify several strengths and weaknesses of our baselines

compared to T2KMatch. Comparing the baselines, we see that the DBpedia-2020

index often achieves higher recall than the subset, though in some cases at the price

of precision. For the NOISE2 subsets of the benchmark, which are based on random

character changes in cells, T2KMatch outperforms our baselines, which do not support

character-based fuzzy string matching. However, the baselines do perform well on

the NOISE1 and MISSP subsets, which is based on realistic typos and misspellings.

Further, the baselines achieve high recall on the HOMO subset, which contains

ambiguous entity labels, also when it is adversarially sorted (SORTED). Finally, the

strong precision of T2KMatch on the T2D and DBP subsets illustrates that its has

strong in-domain performance.

Long Tail Extractions Figure 6.5 is based on an analysis of triples that were

extracted from 100k Wikipedia tables by an integration pipeline similar to the one

described in Chapter 4. For each entity, we count how often it occurs in the subject

and object positions of extracted triples and triples in the KB. To display the relation

between these numbers, we group the entities in exponentially distributed buckets by

frequency (i.e. sets of entities with counts in the KB between exponentially growing
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(b) Extractions by object count.

Figure 6.5: Fact extraction frequency per entity on a sample of 100k Wikipedia tables,
by Wikidata triple count in exponentially sized buckets. For each bucket (range of
10i . . . 10i+1) of triple counts, we count how often entities in the subject (or object)
role occur in the same role in extracted facts. The boxes represent the interquartile
range, the orange line denotes the median, and the whiskers show the minimum
and maximum values. Entities that are well-described by the KB are also generally
well-represented in extractions.

intervals), and show box-plots of extraction counts per bucket. We can see that overall,

there is a connection between the number of triples that are extracted for some subject

entity, and the number of triples in the KB with that entity as subject (i.e. its number

of property-value pairs). The same holds largely for the object position. In general,

this is an indication of how a matching-based interpretation approach may reinforce

the bias of a KB towards certain topics, by extracting facts about popular topics

that are already extensively covered in a “rich-get-richer” dynamic. However, the

spread of frequencies is very large, especially at the bottom: many entities that are

well-described by the KB do not occur in extractions frequently at all.

6.5 Conclusion

In this chapter, we introduced Takco, a modular library for designing and analyzing

web table integration pipelines. It allows for the flexible specification of consecutive

processing stages, which can be easily configured and inspected.
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Takco was designed to be general, scalable, integrated with existing tools, and easy

to use. We have addressed these goals through incorporating best practices from the

Python data science ecosystem. We have leveraged various open-source libraries to

make Takco KB-agnostic, efficient to run on distributed hardware or multiple CPUs,

and easy to extend with patches and custom functions.

We have discussed how its user interface can be used both as an an analysis

tool, providing insight into the novelty of extractions from large corpora or bench-

mark datasets, and also as an exploration tool for comparing the effect of different

configurations and designs of table integration pipelines. This may be useful for

system developers, who may compare the impact of different label indexes, KBs, or

pre-processing configurations, for KB contributors, who may explore the optimal

settings for table integration in their domain, and for benchmark creators, who may

evaluate the difficulty of data subsets in different tasks.

Finally, we presented some preliminary results of running Takco components on

benchmark data and a large corpus. We have found that our baseline label indexes may

achieve competitive performance on a recent benchmark with little fine-tuning, with

reasonable results across varied and adversarially constructed tables. Additionally, we

have shown that there is a correlation between how often information about an entity

is extracted, and how much is already known about that entity. This may cause a

bias in extraction pipelines to expand the coverage of the KB within topics that are

already extensively covered. By identifying situations in which this bias occurs, we

hope Takco may be of use in developing solutions for counteracting it.
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CHAPTER 7

Conclusion

In this thesis, we have attempted to address one fundamental research problem:

How do we automatically integrate a diverse set of tables into a coherent,

machine-readable format?

We broke down this problem into several challenges, and introduced methods

to overcome them. In Section 7.1, we will discuss each of these challenges in turn,

and highlight how our contributions have addressed the fundamental problem and

advanced the state-of-the-art. In Section 7.2, we will reflect upon the work presented

in this thesis and share some lessons learned.

7.1 Main Contributions and Future Work

7.1.1 Extracting Novel Facts

In Chapter 3, we described a trade-off that arises when developing a system which

uses a KB for interpreting tables with the goal of extending that same KB. We showed

that information that is already in the KB can be extracted from tables with high
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precision and recall, while the novel information expressed in tables, which is most

interesting for KB extension, is much harder to correctly interpret. This led us to

formulate the research question:

Research Question 1: How do we measure and account for the trade-off

between accuracy and coverage improvement in table interpretation?

Contributions

We attempted to answer this research question on two fronts. First, we evaluated two

state-of-the-art techniques for table interpretation [Ritze et al., 2015, Zhang, 2017]

and analyzed the amount of novel extractions using two new metrics (Section 3.2).

We observed that these techniques are very accurate at interpreting tables that mostly

express information that is already in the KB, and from which little novel knowledge

can thus be extracted. We additionally showed that fewer novel facts than redundant

facts could be extracted with these techniques from benchmark datasets.

These results motivated us to develop a new method for table interpretation that

was less reliant on matches between the table and the KB. We introduced a new

technique for novelty-oriented table interpretation based on a scalable graphical model

(Section 3.3). The model enforces coherence within a column between the set of

predicted entity links, by relying on context-dependent entity similarities instead of

a single pre-defined property such as their class. In our experiments, this technique

attained higher recall in the row-entity annotation task than existing approaches on

two benchmark datasets, and it was additionally able to correctly extract more novel

facts (Section 3.4). Our approach also allowed us to compare the usage of different

KBs for interpretation, through which we found that using the full DBpedia KB

outperformed the subset of [Ritze et al., 2015], but that using the larger Wikidata

KB did not improve performance. These results indicate that although our method is

able to achieve a good trade-off between confidence and novelty for fact extraction,

it is still important to consider which KB to use when interpreting tables for any

benchmark under consideration.
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Finally, we developed and evaluated a method to disambiguate cell values in the

slot-filling task (Section 3.3.4). Using the predicted properties and subject entities

from the interpretation step, this method ranked object entity candidates by scoring

triples with a KB embedding model. We found that this method improved over a

text-based baseline, allowing us to identify the correct slot-filling candidates with

reasonable accuracy without relying on explicit KB matches that might be biased in

favor of redundant extractions.

Limitations and Future Work

Interpretation Features In Section 3.3 we introduced a method that relies less on

matches between information expressed in the table and the KB, but instead on a novel

signal, namely the coherence between entity predictions within one column. Many

other features may additionally be used for table interpretation that also represent less

direct, more fuzzy associations between the table and KB, and have been researched

previously [Limaye et al., 2010, Ritze and Bizer, 2017, Muñoz et al., 2014]. However,

it has not been evaluated whether these features increase or mitigate the bias towards

confident predictions on redundant data, nor what effect they have on the novelty of

extractions. Extending our coherence-based prediction signal using these features is a

direction for future work which has the potential to further increase the extraction

accuracy of novel facts.

Knowledge Fusion In the experiment described in Section 3.3.4, we rank the

object candidates of our extracted facts using a simple KB completion model based on

embeddings, but there is much potential for improving this step. In recent years there

has been an explosion of research on embedding-based KB link prediction models

(see [Cai et al., 2018] for a survey), but few of them have been evaluated as part of

information extraction systems. Future research should determine their applicability

in this context. Such KB embedding models likewise play an increasingly important

role in the the challenging related problem of knowledge fusion [Dong et al., 2014b], in

which a single correct value must be found for slot-filling among multiple conflicting
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values. However, in this case temporal meta-information is essential for assessing the

correctness of such values [Dong et al., 2015, Oulabi et al., 2016], and thus would

require an embedding model that accounts for temporal n-ary facts (e.g. [Guan et al.,

2019, Goel et al., 2020]). Significant future research is needed to evaluate these complex

KB embedding models in a knowledge fusion setting.

7.1.2 Integrating N-ary Tables

In Chapter 4, we identified a number of popular simplifying assumptions about the

structure of web tables that often do not hold in practice. We argued that these

assumptions impede the extraction of n-ary facts from diverse real-world tables, which

motivated us to address the following question:

Research Question 2: How can we extract n-ary facts from diverse

real-world web tables and integrate them with a KB?

Contributions

To address this research question, we focused on tables from Wikipedia. This focus

allowed us to develop and evaluate a pipeline for large-scale table-to-KB data integra-

tion, which consisted of several stages (Section 4.3). The first stage reshapes tables

using heuristic transformations, with the goal of reducing the diversity of table layouts.

The second stage creates so-called union tables by clustering similar tables together,

to overcome the diversity of table contents. The third stage links the entities of these

union tables to the KB. The last stage relies on functional dependencies to identify

matches between table rows and n-ary facts in the KB, extracting such facts with

high precision.

We evaluated the performance of this pipeline by examining the operation of each

stage separately, as well as by analyzing the resulting extractions from the whole

pipeline (Section 4.4). We found that our heuristics for detecting header cells on which

to unpivot tables returned satisfactory performance on a sample of manually annotated

tables. Individually, some heuristics attained high precision, but they needed to be
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combined in order to achieve acceptable recall. We evaluated the clustering stage on

data that was annotated with gold-standard column correspondences. Our results

show that the similarity metrics which we formulated for matching the headers and

bodies of tables allow the clustering algorithm to accurately create union tables that

express coherent relations. On the gold-standard union tables, we also evaluated our

key column prediction method, which accurately distinguishes between entity-attribute

tables and n-ary tables and outperforms baselines used in related work. We evaluated

the final n-ary KB integration stage by manually checking the Wikidata properties and

qualifiers that our method predicted for table columns. At 65% precision for binary

relations and 92% precision for n-ary relations, we estimate that the full pipeline

could extract over 22 million novel facts for expanding the coverage of Wikidata

from 1.5 million Wikipedia tables. We also showed that these facts very frequently

involved the table context, and could more often be extracted from union tables than

individual tables. These results indicate that performing context enrichment and

schema matching on web tables can improve KB integration performance, compared

to interpreting tables in isolation.

Limitations and Future Work

Structure Understanding We argued in Section 4.3.1 that many real-world tables

are structured in such a way that reshaping them is beneficial to extracting n-ary facts,

in particular with respect to values in their headers. However, we have only brushed

the surface in terms of identifying these cases automatically. Due to the observed

variety and the template-like occurrence of these cases within different domains, we

used a set of general heuristics for detecting pivoted headers, but there are still many

cases that the heuristics do not cover. Alternative approaches to understanding such

table structures, e.g. the machine learning model of [Ghasemi-Gol et al., 2019], rely

on annotated data which is expensive to acquire across many domain of interest.

Therefore, a promising future research direction would be to leverage heuristics such as

ours for weak supervision, in order to effectively train a model to detect and transform

complex table structures in real-world tables.
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Heterogeneous Table Context In our research, we make use of the table context

to extract a limited set of values that we add as extra columns, such as the page title

and table caption. However, there are potentially many more sources of contextual

information that may be vital for correctly extracting information from the tables,

such as temporal meta-information [Oulabi and Bizer, 2017]. Previous work has

extracted “hidden attributes” from template-like repeating structures in the table

context [Ling et al., 2013], but for merging tables from very heterogeneous sources

such attributes would have to be aligned. Interesting future work would thus consist

of matching attribute and value strings across table extraction sources in order to

correctly integrate such contextual information.

7.1.3 Creating a New KB from Tables

Whereas our first two research questions concerned the extension of an existing KB,

we focused on creating a new KB from scratch in Chapter 5. In this situation, human

effort is needed to create the initial data for training a model that can be used to

interpret tables. However, labeling individual training data points is inflexible and

often prohibitively expensive. To overcome this obstacle, we formulated the following

question:

Research Question 3: How can we build a coherent KB from tables on

a new domain, with minimal human effort?

Contributions

Our work on answering this question focused on tables from scientific papers. We

developed a system called Tab2Know, which addressed the challenge of automatically

interpreting these tables using a purpose-built ontology, and of disambiguating the

entities that they contain.

Our pipeline employed both statistical classifiers and logical reasoning. First, we

created an RDF representation of the table structures extracted from PDFs and their

scholarly metadata (such as authors and venues), and combined it with an ontology
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about concepts in the domain of interest. Using a set of labeling functions implemented

as SPARQL queries over this data, we trained a set of weakly supervised classifiers to

predict the type of tables and columns (Section 5.4). Then, we employed a scalable

reasoning engine to link equivalent entities in different tables (Section 5.5). Using a

set of rules that described the existence and equivalence of entities which made use of

the statistical predictions, we were able to match a large number of entities in the KB.

Our empirical evaluation of this approach, using a corpus of recent papers from

several AI venues, gave encouraging results (Section 5.6). On a sample of these tables

which were manually annotated to create a gold standard, we achieved reasonable

performance with light-weight statistical models on the table interpretation task,

while outperforming related work on an existing, simpler benchmark dataset. An

examination of our entity links suggested that their quality is promising, and that all

rules contribute to the high number of matches found. The combination of weakly

supervised interpretation models and rule-based reasoning was conducive to the low

manual effort needed to create this KB, while the ontology contributed to its coherence.

Limitations and Future Work

Complex Ontologies The ontology that we used for table interpretation in Sec-

tion 5.4.1 consisted of a shallow taxonomy of classes related to the concepts we

encountered in a sample of tables from our corpus. One promising avenue of future

work is the creation of a richer ontology, expressing more relations between classes

such as disjointness. Similarly, information about the range and domain of properties

in the ontology could boost the precision of our table interpretation models. It is

an interesting open question for future research how to incorporate such ontological

knowledge into the training of weakly supervised statistical models.

Expressive Labeling Functions In Section 5.4.1, we demonstrated the potential of

using the SPARQL query language for writing labeling functions for weak supervision,

which opens up many possibilities for future research in this domain. In particular, it

would be interesting to incorporate more information from the table context into these
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queries, such as interactions between venues, keywords in paper abstracts, citation

links and author information. A further avenue for future research would be to

incorporate more background information into the KB of extracted structures that is

used for data labeling, such as existing links to external KBs from paper metadata or

predicted topics.

Robust PDF Table Extraction One limitation of our pipeline is its reliance on a

baseline table extraction pre-processing step, which introduces noise into the dataset,

in particular for tables with complex structure. There has been much recent research

into table extraction methods using deep neural networks, which may significantly

improve the data extraction quality if they are able to generalize sufficiently across

domains. Additionally, future research may use table interpretation techniques to

provide a supervision signal for training such extraction models, e.g. by preventing

them from splitting cells that contain entity names.

7.1.4 Designing Pipelines

In Chapter 6, we turned our attention to the application of table integration techniques

in real-world settings. Here, the development and evaluation of systems is vital. To

understand the challenges of integrating data from diverse sources and domains,

researchers and developers must have the tools to inspect and debug each system

component in practice. Therefore, we posed the following question:

Research Question 4: How can we support research into table extraction

and integration pipelines on realistic data?

Contributions

To address this challenge, we developed a modular Python library called Takco. Its

design allows for the loose coupling of various stages in table integration pipelines, and

enables users to analyze and tune these stages for their use-case. That way, researchers
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and practitioners have the flexibility to adapt and re-configure existing solutions to

their needs, and evaluate them on new domains.

In Section 6.3, we have detailed how it may support research and development into

KB extension from web tables on several fronts. As an analysis tool, it can be used to

provide insight into the novelty of individual extractions, and to explore the set of

features that were used to link entities, classes or properties. Additionally, it can be

used to evaluate the extraction novelty aggregated per table or benchmark dataset,

which allows for the identification of challenging data subsets, or the comparison of

benchmarks on their potential for evaluating systems on the task of KB extension.

In Section 6.3, we also described several scenarios in which Takco could be used

by researchers and practitioners. We highlighted its usefulness for system developers,

who may compare the impact of different label indexes, KBs, or pre-processing

configurations, for KB contributors, who may explore the optimal settings for table

integration in their domain, and for benchmark creators, who may evaluate the

difficulty of data subsets in different tasks. Finally, we illustrated the usage of Takco

on examples of various domains in Section 6.4, which highlighted interesting properties

of real-world data that open up new research directions.

Limitations and Future Work

N-ary Interpretation Models Like the existing methods we discuss in Chapter 3,

the n-ary table interpretation module of Takco relies on factual overlap between the

KB and table. Though we are nonetheless able to extract novel facts due to the schema

matching and stitching step, there is still much potential for exploring n-ary interpre-

tation methods that may be less sensitive to the bias that we described in Chapter 3.

One potential approach is to exploit co-occurrence statistics between datatypes and

qualifiers. Intuitively, we expect that given a set of predicted column classes such

as {Politician, Electoral District, Election, Percentage}, our common sense

would tell us that the table expresses a relation that has something to do with votes.

Future work may improve upon our interpretation approach by leveraging such statis-

tics for interpreting n-ary tables without relying on KB matches, thereby extracting
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more novel n-ary facts.

Large-scale Evaluation Though Takco has returned satisfactory results on samples

of data from different domains, it is an open question which configurations are most

suited for large-scale web table integration. However, it is not straightforward to

find such optimal configurations in the large combinatorial space of parameter values.

One possible starting point is the running of ablation studies, in which the effect of

removing entire modules is measured on the integration quality for different sources

of web tables. However, this requires a large amount of manual labeling of extracted

facts, and does not provide insight into the way the different modules may interact in

various settings. Alternatively, future research may focus on finding configurations

that are good enough for practical impact, by working with KB contributors to judge

and filter extractions for extending a real-world KB.

7.2 Final Reflections

In this final section, we will reflect upon several aspects of doing research in this field,

and share some lessons learned from the work we have done.

Benchmarks and Runnable Systems The research described in this thesis could

not have been done without the tremendous effort of other researchers to create

benchmark datasets, and open-source code with which to reproduce their efforts. It is

hard to overstate the importance of shared resources to fine-grained comparisons of

methods such as those in Chapters 3 and 5. For the task of table interpretation, small

variations in implementation can make all the difference. While research papers can

only fit a limited amount of information, the data and code provide the bedrock on

which further research can be built. It is therefore vital that the community values

the clear documentation of seemingly trivial details, such as table pre-processing

operations, the exact version of the KB used both for annotation and interpretation,

the exact set of entity labels used and the configuration of the search index in which

they are stored, and handling of edge-cases. Far from being implementation details,
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these issues are central to the benchmarking effort. In this way, the systems that we

compared against have set an example of open research worthy of following.

Heuristics and Learning In recent years, there has been a trend of applying

progressively more complex machine learning models in virtually every aspect of

software engineering. To train these models, this trend has been accompanied by the

need for ever larger labeled datasets, which are expensive to obtain. This dynamic

leads to inflexible models which need to be re-trained on new data when requirements

change, and whose predictions are often hard to explain or audit. In contrast, rules and

ontologies written by humans encode models that can be flexibly adapted to changing

requirements, and can be transparently inspected and understood. The techniques

introduced in this thesis do not require manually labeled training data, nor are they

based only on the straightforward application of rules. Instead, our approach has

been to leverage precisely specified knowledge to make approximate predictions. In

Chapter 3, this was done through a graphical model and KB embeddings, in Chapter 4

through heuristics and unsupervised clustering, and in Chapter 5 through weak

supervision and reasoning. Perhaps the last case most clearly shows how statistical

and logical models may work together: by manually specifying labeling functions

and rules, we retain a level of control over the method that we would not have had

otherwise, while still being able to accurately process a wide variety of input data.

We expect such systems to thrive in knowledge-intensive applications in the future,

and that research on this topic will have much practical impact.

Real Data Throughout all research presented in this thesis, we have focused on

working with data from real-world sources. We have attempted to develop techniques

that deal with phenomena that appear in actual tables on the web and in research

papers, motivated by a close look at the data itself. Though this can be overwhelming

when confronted with a flood of niche issues that are hard to capture in a single

scientific model, it never fails to open up new research avenues. Indeed, it is the

amazing variety of the information in these corpora that may inspire the development
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of novel data integration methods. By taking on the challenge of processing a wider

range of realistic phenomena, we believe that research on web tables can not only

expand KBs with new facts, but also answer fundamental questions about how people

represent information.
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Summary

Tables are used for representing similarly structured data in an enormous variety of

documents and formats. Over the past 30 years, the huge increase in the volume

of published documents on the web has opened up the potential for automatically

extracting information from human-readable tables in those documents. Such tables

may express information that is useful for many applications (such as web search and

question answering), but they often have diverse contents and structures. To deal

with this diversity, these applications can benefit from automatically integrating the

information from such tables into coherent, machine-readable Knowledge Bases (KBs).

The first step of this integration process is table interpretation, which consists of

finding associations between table contents and some background knowledge. However,

effectively leveraging this background knowledge introduces several challenges. One

such challenge is that on existing domains tables are not only interpreted using a

KB as background knowledge, but are also used to extend the same KB with new

information, which may cause a bias towards redundant extractions. A further issue is

that there may also be tables for which the KB does not provide enough background

knowledge to permit interpretation on their own. Additionally, on new domains this

background knowledge must be specified manually, which may involve much human

effort. Existing approaches are often unsuited to deal with such real-world phenomena.
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Summary

In this thesis, we present several approaches towards overcoming these challenges

in order to extend KBs with new information extracted from human-readable tables.

We investigate several real-world phenomena that impede the integration of tables

with KBs, and develop methods for overcoming these challenges. First, we describe

the challenge of extracting novel information from tables that is not yet present in a

KB, when the same KB is used for interpreting them. For addressing this problem,

we develop a new evaluation approach, as well as a novel table interpretation method.

Second, we describe the challenge of extending KBs from tables with extracted n-ary

facts, which involve more than two entities or values. To address this, we present and

evaluate a data extraction pipeline for Wikipedia tables that overcomes the diversity

of table layouts and the sparsity of n-ary information in the Wikidata KB. Third, we

investigate the problem of creating a KB on a new domain from tables with minimal

human supervision. We propose a solution that combines weakly supervised machine

learning and logical reasoning, and we evaluate it on tables from scientific papers.

Fourth, we describe a new system for supporting research into data extraction and

KB extension pipelines from tables.

In conclusion, the techniques we have developed effectively leverage background

knowledge to overcome the variety of table contents and structures, thereby contribut-

ing towards the extension of KBs with new information from human-readable tables.

Nevertheless, there is still much potential for research into KB extension from tables.

We close this thesis with suggestions for future research, and reflections on research in

this field.
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