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Abstract

Automatic knowledge graph construction, using supervised relation extraction from
text, has become the state-of-the-art to create large-scale repositories of background knowl-
edge for various applications. Recent advances in machine learning and Natural Language
Processing (NLP), in particular the advent of the large language models, have improved
the performance of relation extraction systems significantly. Traditional leaderboard style
benchmark settings show very high performance, suggesting that these models can be em-
ployed in practical applications. Our analysis shows that in reality, though, the extraction
quality varies drastically from one relation to another, with unacceptable performance for
certain types of relations. To better understand this behaviour, we perform a seman-
tic error analysis on a popular distantly supervised benchmark dataset, using ontological
meta-relations to describe various error categories, which shows that relations that are
confused by state-of-the-art systems are often semantically closely related, e.g., they are
inverses of each other, in subproperty relations, or share the same domain and range. Such
an extensive semantic error analysis allows us to understand the strengths and weaknesses
of extraction models in a semantic way and to provide some practical recommendations to
improve the quality of relation extraction in the future.

1. Introduction

Building knowledge graphs is still a very costly process as facts often have to be curated
manually [Vrandečić and Krötzsch, 2014]. While various extraction techniques from semi-
structured data have helped to automate the process of large-scale knowledge graph cre-
ation [Auer et al., 2007], modern KG applications require the extraction of facts for in-
creasingly many distinct relation types at high precision. To meet these requirements,
information (or triple) extraction is often split into two steps: entity linking and relation
extraction [Martinez-Rodriguez et al., 2020]. Relation extraction is usually formulated as
a classification problem: given a sentence and entity mentions the goal is to predict one of
multiple relationships of a given KG schema. Large amounts of training data may be gener-
ated by distant supervision [Mintz et al., 2009], where training data is created automatically
by linking an existing knowledge graph to textual data, which is then used for some form
of fine-tuning of large pre-trained language models (Figure 1). While this kind of training
data generation may lead to some noisy training examples, its quality is usually sufficient
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Figure 1: Overview of Distantly Supervised Relation Extraction. The first and third gen-
erated training examples are incorrect, the second and forth ones are correct.

to produce acceptable results, which makes relation extraction with distant supervision the
de-facto standard approach for creating knowledge graphs automatically.

Traditionally, relation extraction (RE) for knowledge graph construction is evaluated
with standardized benchmark datasets, where novel methods are evaluated using their av-
eraged F1 scores in long leader board lists1. In particular, training RE models using distant
supervision is a popular way to expand an existing KG with new information. Most re-
cent distantly supervised relation extraction (DSRE) methods reach F1 scores of 80%-90%,
which might suggests that the task is almost solved : Methods are ready for real applica-
tions and can be employed to automatically construct high-quality knowledge graphs from
textual data. However, a more detailed analysis of a recently published manually labeled
dataset shows that the reality is different, and rather more bleak. This is because the av-
eraged measures reported in leaderboard lists hide the fact that the individual extraction
quality of relations varies significantly, with performance for some relations unacceptably
low. Even though the best performing model in our experiments achieves more than 85%
macro-averaged as an overall F1 score, large parts of the extracted relations have an F1
score below 50%, while others easily achieve 100%.

Our in-depth analysis reveals that models actually still make many mistakes and cannot
be used in practical scenarios directly as of yet. Instead, more careful considerations of their
strengths and weaknesses are necessary. A typical example is that models often confuse
similar relations, e.g., capital and largestCity. Using well understood notions from
the Semantic Web literature, we use ontological meta-relations to describe the confusion
of extraction models. Take capital and largestCity, which are actually connected via
a shared superproperty city and, hence, are siblings according to the ontological schema.
In this paper, we show that, among other meta-relations, sibling relations are frequently
confused by recent models.

1. https://paperswithcode.com/task/relation-extraction
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In this paper we come up with semantic error categories for relation extraction built on
well-known ontological concepts to make a semantic error analysis. Thus, we are able to
classify errors into different categories, providing a comprehensive overview of the strengths
and weaknesses of more recent model types. The insights can be used in practice to pick
an appropriate relation extraction model architecture, refine the knowledge graph ontology,
gather additional training data, or add a human-in-the-loop for difficult semantic categories.
Our datasets and an interactive Jupyter Notebook are available on GitHub. 2.

Overall, our contributions can be summarized as follows.

1. We employ meta-relations, i.e., inverseOf, subproperty, superproperty, and oth-
ers, to describe typical confusions of state-of-the-art distantly supervised relation ex-
traction models on a representative benchmark.

2. We employ this knowledge to create semantic error categories that give the user a
better understanding of the problems of current extraction models.

3. We give recommendations on how these semantic insights can be used to improve the
distantly supervised relation extraction quality in practice.

2. Relation Extraction: Basics and State-of-the-Art

In most existing work, relation extraction is formulated as a classification task, where the
input is a sentence and a pair of entities that are mentioned in this sentence. The output is,
then, one (or multiple) relations between the given pair of entities. As most other supervised
classification tasks in Natural Language Processing, the best results have recently been
obtained by approaches that leverage large pre-trained Neural Language Models, which
can be categorized into two groups. In fine-tuning-based relation extraction, a classification
layer is added to a pre-trained language model [Soares et al., 2019], which is then fine-tuned,
i.e., trained on the training dataset to extract relations from text. More recently, prompt
tuning-based approaches have shown a slight increase in performance [Han et al., 2021,
Chen et al., 2021, Shin et al., 2020, Josifoski et al., 2021]. Here, the problem is modeled as
a word prediction task for which the language model is trained to predict a word (out of all
relation labels) connecting the two entity labels [Liu et al., 2021].

In both paradigms, the input consists of sentences with two highlighted entities. More-
over, the input is annotated with some additional tokens: (1) <CLS> is a special token added
to the beginning of each input sentence. Later in the classification process, the embedding
vector of the CLS token is used to perform sentence classification. (2) <E1> and </E1> are
a start and end token to mark the words that belong to the first entity, (3) <E2> and </E2>

similarly for the second entity. In multi-class relation extraction, as considered in this work,
the output is usually represented as one relation, out of a set of target relations, which has
to be classified as either correct or incorrect.

In practice, many input sentences express none of the target relations. This problem
is often solved by introducing an additional class, called NA (none of the above), which is
handled like the other classes. However, selection of good training data for the NA class is
difficult given its broad semantics, as it is meant to cover all other relations.

2. https://github.com/JanKalo/SemanticErrorAnalysis
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Distant supervision is the process of generating training data automatically from a
text corpus and an existing knowledge graph to overcome the lack of manually annotated
training data [Mintz et al., 2009]. Whenever a given sentence contains entities with an
existing triple in a knowledge graph, it is assumed that the sentence expresses at least this
triple and thus can be used for training a relation extraction classifier for the respective
relation. As an example of distant supervision, we present a small text corpus, a knowledge
graph, and the resulting training examples in Figure 1. Here, the first sentence contains the
entities Amsterdam and the Netherlands. In the knowledge graph, these two entities are
related by the capital relation, so that this sentence is used as a training example for the
relation class capital. This example shows, though, that distant supervision can construct
noisy training data as the sentence does actually not express the capital relation (it only
states that Amsterdam is the city with the most inhabitants).

Similar to supervised relation extraction, the choice of negative training examples for
the NA class is a difficult and, as yet, unsolved problem. In some work the NA class is
randomly sampled, but is also created from relations that are not part of the extraction
process [Gao et al., 2021]. In the fourth example, the sentence is labeled as NA instead of
artwork, due to definition of the NA class. Later in this paper we will discuss the impact
of the definition of the NA class on the extraction results.

Usually, distant supervision is a reliable approach to generate large amounts of high-
quality training data. Before the advent of the language model-based approaches, still, a lot
of research went into improving distant supervision training and training data [Roth et al.,
2013, Smirnova and Cudré-Mauroux, 2018, Ye and Ling, 2019, Shang et al., 2020].

Datasets. The availability of datasets which can be used to evaluate distantly supervised
relation extraction is rather limited. The most popular benchmarks is NYT10, which is
based on Freebase and NYT articles. Unfortunately, this dataset has several quality is-
sues [Riedel et al., 2010, Surdeanu et al., 2012] and even more problematic is the lack of
manually annotated test data for an informative evaluation of systems. While such a man-
ually created test set was recently published by Gao et al. [Gao et al., 2021] under the name
NYT10m, it still only has a small number of 25 relations (most of them covering geographic
relations). In addition, the authors proposed wiki20m, a new dataset built from earlier
distantly supervised relation extraction datasets based on Wikidata and English Wikipedia
articles, using existing hyperlinks as entities. In the test set, all sentences were manually
filtered by human annotators, thus guaranteeing a high quality.

We have opted for using this dataset in our paper because it is at the moment the largest
DSRE dataset available that has a manually annotated test set, as well as a set of target
relations that are described by a highly expressive knowledge graph using meta-relations.
We further discuss the choice of this dataset in Section 4.2.

3. Motivation: Standard Benchmark Revisited

In typical relation extraction papers, state-of-the-art models are evaluated on existing
benchmark datasets, similar to the ones described in the previous section, focusing on
averaged performance metrics. In this section, while we replicate state-of-the-art re-
sults on the recently published distantly supervised wiki20m dataset, our focus is a more
detailed analysis of the evaluation results. We will show that there is a significant discrep-
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ancy between the average performance across relations and the performance on individual
relations, which motivates our semantic error analysis provided later in the paper.

Benchmark Setup The wiki20m dataset comprises 698,721 / 64,607 / 137,986 sentences
in the training / test / validation set, respectively. In addition to the 80 target relations,
one NA (none of the above) class is used. The training and test examples for the NA class
consist of a set of Wikidata relations which are not part of the 80 target relations.3

Our relation extraction methods comprise several BERT-based approaches [Han et al.,
2020] based on both fine-tuning and a recent prompt-based approach [Han et al., 2021]. The
BERT-based techniques are available through the framework OpenNRE4, and based on pre-
trained BERT models. The second big model class that we are using is the prompt-based
model PTR 5. Overall, these adds up to the following models:

• The BERT-CLS model uses the <CLS> token of BERT to perform the classification
task, which is the standard approach for sentence classification tasks in BERT.

• The literature has shown small improvements when special entity tokens are used to
mark the entity mention span in input sentences. Based on this, the BERT-ENT
model uses the embedding vectors of special entity tokens to perform classification.

• Additionally, we use masked versions of the same models (BERT-M-CLS and BERT-
M-ENT). This means that the entity mentions are hidden during training, so that the
model is less prone to biases from entity names.

• PTR is prompt-tuning approach with rules which uses a set of manually defined
prompts [Han et al., 2021]. The manually written prompts for this dataset have been
written by the authors and are available as supplemental material.

Results The performance of the five relation extraction systems is evaluated using preci-
sion, recall, micro-, and macro-averaged F1-measure. The micro-averaged scores reflect the
precision and recall as averaged over all test instances, thus they are more influenced by
relations that occur more frequently in the test set. Macro-averaged scores, in contrast, are
averaged over all relations and thus treat them equally. As both training and test sets are
very imbalanced (reflecting different data collection distributions of the distant supervision
and manual annotation processes), micro- and macro-averaged scores can differ significantly
on this task. The overall results are presented in Table 1.

We observe that the two masked systems (BERT-M-CLS, BERT-M-ENT) have similar
average performances, with an accuracy of around 40% and low F1 measures. While BERT-
CLS outperforms both masked models, it is in turn dominated by BERT-ENT and PTR,
which achieve F1 measures of over 80%.

Due to the choice of distinct NA classes in training and test dataset in the creation of
wiki20m, the number of confusions with the NA class is high. In the right most column in
Table 1, we show the errors which are not due to confusions with the NA class. These non-
NA errors are hardly influenced by the models themselves, i.e., significantly better models

3. Unlike other distantly supervised datasets, the Wikidata relations used for forming the NA class in
training set are distinct from the set of relations used to create the test set. This leads to different
semantics of the NA class in training and test, which is a questionable design decision for the benchmark
dataset. We will therefore not focus on the errors caused by the NA class, but leave this for future work.

4. https://github.com/thunlp/OpenNRE
5. https://github.com/thunlp/PTR
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Table 1: Overall performance on wiki20m.

Macro Micro Non-NA
ErrorsModel Precision Recall F1 Precision Recall F1 Acc.

BERT-M-CLS 0.62 0.30 0.35 0.61 0.31 0.41 0.43 0.15
BERT-M-ENT 0.69 0.32 0.37 0.60 0.32 0.41 0.41 0.16
BERT-CLS 0.79 0.68 0.71 0.79 0.68 0.73 0.71 0.14
BERT-ENT 0.84 0.78 0.79 0.84 0.78 0.81 0.79 0.11
PTR 0.83 0.82 0.81 0.83 0.81 0.82 0.79 0.12

Table 2: The five worst classified relations ordered by F1 measure for BERT-ENT and PTR.
We also provide Precision and Recall values.

PTR BERT-ENT
Relation Precision Recall F1 Relation Precision Recall F1

residence 0.63 0.26 0.36 after a work by 0.91 0.14 0.24
screenwriter 0.30 0.52 0.38 residence 0.76 0.17 0.28
part of 0.48 0.34 0.40 part of 0.46 0.23 0.31
after a work by 0.85 0.32 0.47 followed by 0.96 0.26 0.41
work location 0.45 0.54 0.49 screenwriter 0.39 0.50 0.44

like BERT-ENT and PTR achieve much better overall results, but the non-NA errors are
hardly influenced. Therefore, in this work we only focus on non-NA errors.

In leaderboards, usually the average F1 measures and the accuracy is reported. With
around 80% in both measures, these models seem, apparently, to achieve an excellent quality
in relation extraction. The actual performance, however, varies dramatically between the
different relations. Table 2 shows the performance of the bottom five relations from the two
BERT-ENT and the PTR model. Note that the worst relation (after a work by) only
achieves an F1-measure of as low as 24%. This is significantly worse than the average F1
measures over all relations. For many practical scenarios this is far from being acceptable.
Furthermore, this low performance cannot be attributed to the lack of training data. The
dataset contains ample training examples for these relations, but models score better on
other, less frequent relations. This under-performance is therefore not a long-tail problem.
Even though both models perform bad for similar relations (after a work by, residence,
part of, screenwriter), there are also important differences. followed by is significantly
better handled by PTR. Motivated by these first findings, we further investigate the model’s
confusions.

Model Confusions As a first step of a more in-depth error analysis, let us look at the
model confusions, i.e., a matrix showing the predicted relations and the relations they were
confused with by the model. Since the entire confusion matrix for 80 classes is hard to
visualize, we focus on the top confusions for the two best models PTR and BERT-ENT in
Table 3. It is clear that confused relations are highly similar to each other. Often, e.g.,
they share the same domain and range: the types of entities in subject and object position.
The top of the confused relation pair for both models are residence and work location,
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Table 3: Most frequently confused relations for the BERT entity model and PTR. Gold Re-
lation is the true label in the test dataset and Prediction the relation classifier’s prediction.

Model Gold Relation Prediction Frequency

P
T
R

residence work location 515
after a work by screenwriter 367
location of formation headquarters location 247
publisher developer 178
tributary mouth of the watercourse 158

B
E
R
T
-E

N
T residence work location 767

after a work by screenwriter 395
followed by follows 350
publisher developer 228
headquarters location location of formation 224

which have a very similar semantics; for many persons they coincide (are even identical),
since they live at the same place they are working.

4. A Semantic Error Analysis of Relation Extraction

In the previous section we have shown that for a large number of relations automatic
extraction still gives unacceptably bad results, which makes the approach unsuitable for
automatic knowledge graph construction. More specifically, our experiments have revealed
that highly similar relations often are confused by models. These problems occur due to
the noise in the training data, as well as to the problems related to the prediction models.
In this section, we perform a semantic error analysis of these confusions, by employing
ontological information about relations to describe and categorize them.

4.1 Creating Semantic Error Categories

When evaluating the RE models, we can categorize their errors using meta-relations. Here,
we consider meta-relations to be relations describing the ontology schema, i.e. the relations
between the relations, e.g., their domain and range, sub-/superproperty, or inverse. The
meta-relations that we use stem from the RDFS and OWL vocabulary, such as rdfs:domain,
rdfs:range, rdfs:seeAlso, and rdfs:subPropertyOf, as well as owl:inverseOf.

Since we are working with Wikidata, we employ the Wikidata equivalents to the respec-
tive RDFS and OWL relations. In particular, we use inverse property (P1696), subproperty
of (P1647) and related properties (P1659) for the last three mentioned meta-relations. Us-
ing the subproperty relation, we materialize the property hierarchy. However, not every
meta-relation discussed above has a direct match. Instead of defining the range and domain
of relations as per RDFS, Wikidata employs property constraints (P2302) to describe for
which classes of entities the property should be used, using qualifers of constraint entities.
The union of qualifier values (e.g. using owl:unionOf) for these constraint entities (type
constraint (Q21503250) for subjects and value-type constraint (Q21510865) for objects) may
then be considered to describe the range and domain of the properties.
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For this analysis, our aim is to create a semantic confusion matrix which categorizes the
confusions as shown in Table 3 into semantic categories. The goal is to create a categoriza-
tion that is as informative as possible when describing the errors that the RE models make.
Therefore, we extend the basic meta-relations in various ways:

• inverse: The two relations are directly inverse to each other, e.g. following and
followed by .

• subProperty: One property is either directly or transitively a sub relation of another
relation, e.g. capital and location.

• superProperty: This category is the inverse category to the previous one, e.g.
location and capital.

• sibling: Sibling relations share the same super property, either directly or transitively,
e.g. work location and residency both have the same superproperty location.

• seeAlso: The two relations are connected via a seeAlso relation in Wikidata, since
they are related to each other, but are not in any of the other meta-relations, e.g.
tributary and mouth of the watercourse.

• rangeDomainMatch: The two relations share at least one subject and object type
constraint specified in Wikidata, e.g. publisher and developer share the subject
type constraint video game series and the object type constraint organization.

• onlyDomainMatch: The two relations share at least one subject type but no object
type constraint, e.g. distributor and genre share the subject type constraint movie.

• onlyRangeMatch: The two relations share at least one object type but no subject type
constraint, e.g. head of government and architect share the object type constraint
human.

Some relation pairs may be meta-related both by sub/superProperty and sibling (e.g.
if they form a chain in the property hierarchy). The match-based categories and seeAlso
may also overlap with other categories. Despite our efforts to categorize all model errors,
there are still confused relations that do not fit our scheme. field of work may, e.g., be
confused for sport, as both might concern a celebrity’s claim to fame, but these properties
are not directly related in the Wikidata ontology. However, we have observed that the best-
performing models also make fewer uncategorized errors, i.e. the most challenging errors
are those that can be described in our scheme.

4.2 Ontology-driven Semantic Error Analysis

As a first analysis, we investigate the frequency of the different error categories introduced
above for each of the relation extraction models (Figure 2). Please note, that each confusion
(error) can be counted for multiple error categories. The errors depicted in the figure are
the relative number of errors with respect to the overall number of predictions. Hence, the
numbers can be compared between models and between the different categories.

The most frequent errors are domain, rangeDomain and sibling errors. There are sig-
nificantly fewer errors for relations which only share the same range. Inverse and sub- or
superproperty errors are even more rare. Please note, however, that the differences between
different error categories might also be due to the choice of relations in wiki20m, as there
are many properties without any inverse or superproperty relations.
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Figure 2: Frequency of errors for the semantic error categories per model.

Table 4: The most frequently confused relations for the BERT entity model and PTR. Gold
Rel. is the true label in the test dataset and Prediction the relation classifier’s prediction.

Model Gold Rel. Prediction Freq. Category

P
T
R

residence work loc. 515 sibling / seeAlso / rangeDomainMatch
after a work by screenwriter 367 sibling / rangeDomainMatch

loc. of formation headquarters loc. 247 sibling / seeAlso / onlyDomainMatch
publisher developer 178 rangeDomainMatch
tributary mouth of watercourse 158 seeAlso / rangeDomainMatch

B
E
R
T
-E

N
T residence work loc. 767 sibling / seeAlso / rangeDomainMatch

after a work by screenwriter 395 sibling / rangeDomainMatch
followed by follows 350 inverse

publisher developer 228 rangeDomainMatch
headquarters loc. loc. of formation 224 sibling / seeAlso / onlyDomainMatch

Masking models make significantly more errors in the onlyDomainMatch, but perform
quite well in the other categories. Overall, they seem to make fewer errors that are covered
by our semantic error analysis. This indicates, however, that there are more confusions with
the NA-class. Another interesting insight is that the prompt-based model (PTR) hardly
makes any inverse confusions, while this frequently happens with the BERT-CLS model.

Interestingly, the non-masking models (BERT-ENT, BERT-CLS, and PTR) have more
trouble working with sibling relations, or relations sharing the same domain and/or range.
This may be a problem for non-masking models, since they use entity mentions as additional
information for the classification. Since highly related relations are usually about entities
of the same type, using entity information for the classification might confuse the models
predictions.

Table 4 provides a more detailed analysis over the different error categories and the
most frequent pairs of confused relations. Note that the errors that are made seem rather
natural, i.e., since most of the errors are between relations that are semantically very similar
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and therefore can also be hardly distinguished by us humans6 It is fair to say that these
errors can be considered the hard, and challenging, cases.

An open question remains the generalization of these results to other settings and bench-
mark datasets. Our analysis is motivated by the application of DSRE to extend an existing
knowledge graph, for which the wiki20m dataset provides a controlled setting using an
semantically-described set of target relations. This may cause relations to be confused due
to distant supervision noise or biases, due to the closed-world assumption that is inherent
in training. Furthermore, in other domains there may be significant effects due to a domain
shift between the KG used for distant supervision and the text corpus.

5. Recommendations and Conclusion

While our semantic error analysis is helps understanding the details of the performance of
relation extraction systems on benchmark datasets, these insights can also have practical
implications:

1. Carefully consider the choice of model The results from our semantic error
analysis as presented in Figure 2 gives an overview of the strengths and weaknesses of
different relation extraction model types. In a practical scenario, the semantic error
categories of the relations of interest can be used to inform the choice of RE model.
For example, the PTR and masking models perform best on inverse relations, so these
may be preferred in scenarios where many inverse relations need to be extracted.

2. Refine the knowledge graph Another possibility to prevent mistakes in automatic
extraction, is to refine the ontology of the knowledge graph. Our analysis has shown
that many confused relations are highly similar, often even in a superproperty relation.
In these cases, it might make sense to merge existing relations of the knowledge graph,
depending on the intended application. This is similar to what the authors did in the
improved version of the relation extraction dataset Re-TACRED [Stoica et al., 2021],
where the original dataset contained many confusions between semantically similar
relations, thus they were collapsed to improve the dataset quality.

3. Add additional training examples or perform active learning As it broadly
holds that semantically similar relations are difficult to distinguish by relation extrac-
tion models, in many cases it will be useful, and even necessary, to gather additional
training data for those complex error categories, e.g. through an informed active
learning step where additional complex examples are manually annotated.

4. Use semantic error analysis to support humans in the loop The knowledge
about typical error categories and their semantics can furthermore be exploited by
human-in-the-loop approaches to the extraction process. A semantic error analysis of
confused relations can help pinpoint annotators towards predictions according to our
categories together with additional information on the type of errors and semantically
enhanced annotation guidelines.

Conclusion In this paper, we have first given an extensive overview of the state-of-the-art
relation extraction techniques and their implications for automatic knowledge graph cre-

6. The property discussion pages from Wikidata reflect this insight https://www.wikidata.org/wiki/

Property_talk:P974.
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ation with distant supervision. We have shown that, even though recent methods achieve
very high numbers in averaged benchmark scores, i.e. around 80% F1 score on a a recent
Wikipedia-based relation extraction dataset, these numbers hide the actual variety of the
performance across different relations. Starting from a confusion matrix, we further inves-
tigate the prediction errors that the models make. Our analysis reveals that most of those
errors can be described through ontological meta-relations, and categorized into different
confusion categories based on those meta-relations. Additionally, we provide recommenda-
tions on how the insights of a semantic error analysis may improve relation extraction in
practice, e.g. how to adjust the KG ontology to reduce the impact of RE model weaknesses.

For future work, we plan to extend our work by studying more datasets and more relation
extraction systems. This might reveal even more architectural differences and interesting
insights. It would also be interesting to analyze which errors are due to noise in the training
data from the distant supervision process. We also plan to make the error categories more
fine-grained. Finally, we will study ways to automate the recommendations discussed in
the previous sections, and experimentally quantify their impact. In general, we believe that
our method can also be transferred to other machine learning problems as well to give a
valuable insight into the performance and robustness of large models.
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